Citation: 黄惠嫦, 文依宁, 梁新, 赵明明. 慢性间歇性低氧导致认知障碍的细胞机制研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2025, 24(3): 218-224. doi: 10.7507/1671-6205.202405114 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | 何权瀛, 陈宝元, 韩芳. 睡眠呼吸病学. 第2版. 北京: 人民卫生出版社, 2022: 4-8. |
2. | Rae C, Bartlett DJ, Yang Q, et al. Dynamic changes in brain bioenergetics during obstructive sleep apnea. J Cereb Blood Flow Metab, 2009, 29(8): 1421-1428. |
3. | Mubashir T, Abrahamyan L, Niazi A, et al. The prevalence of obstructive sleep apnea in mild cognitive impairment: a systematic review. BMC Neurol, 2019, 19(1): 195. |
4. | 覃丽霞, 钟清清, 陆怡安, 等. 老年阻塞性睡眠呼吸暂停合并认知功能障碍患者睡眠及脑功能状态特点. 中国临床新医学, 2024, 17(1): 12-18. |
5. | 何权瀛. 阻塞性睡眠呼吸暂停综合征何权瀛2022观点. 第1版. 北京: 科学技术文献出版社, 2022: 28-43. |
6. | Macey PM, Henderson LA, Macey KE, et al. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med, 2002, 166(10): 1382-1387. |
7. | 沈煜斌, 欧茜文, 刘松. 阻塞性睡眠呼吸暂停对脑代谢功能的影响. 中国呼吸与危重监护杂志, 2024, 23(2): 132-137. |
8. | Yang Q, Wang Y, Feng J, et al. Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: the potential roles played by microglia. Neuropsychiatr Dis Treat, 2013, 9: 1077-1086. |
9. | Nair D, Ramesh V, Li RC, et al. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse. J Neurochem, 2013, 127(4): 531-540. |
10. | Aviles-Reyes RX, Angelo MF, Villarreal A, et al. Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem, 2010, 112(4): 854-869. |
11. | Lewén A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma, 2000, 17(10): 871-890. |
12. | Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410(6824): 37-40. |
13. | Minden A, Karin M. Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta, 1997, 1333(2): F85-104. |
14. | Zhuang S, Schnellmann RG. A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther, 2006, 319(3): 991-997. |
15. | 张盼盼, 韩晓庆, 李琳, 等. 间歇低氧大鼠细胞外信号调节激酶与认知功能变化. 中国神经精神疾病杂志, 2014, 40(9): 517-521. |
16. | 张永林, 张媛媛. 阻塞性睡眠呼吸暂停低通气综合征间歇性低氧血症致认知障碍发病机制研究进展. 中华临床医师杂志(电子版), 2016(23): 3622-3625. |
17. | 赵雅宁, 王红阳, 李琳, 等. 不同程度间歇性低氧对大鼠不同脑区 Bax、Bcl-2表达的影响. 中国老年学杂志, 2015(1): 162-163. |
18. | Coimbra-Costa D, Alva N, Duran M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol, 2017, 12: 216-225. |
19. | Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol, 2000, 62(6): 649-671. |
20. | Porter NA. Chemistry of lipid peroxidation. Methods Enzymol, 1984, 105: 273-282. |
21. | Zauner A, Daugherty WP, Bullock MR, et al. Brain oxygenation and energy metabolism: part I-biological function and pathophysiology. Neurosurgery, 2002, 51(2): 289-301; discussion 302. |
22. | Hardeland R. Neuroprotection by radical avoidance: search for suitable agents. Molecules, 2009, 14(12): 5054-5102. |
23. | Blanco S, Hernández R, Franchelli G, et al. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage. Nitric Oxide, 2017, 62: 32-43. |
24. | Hung MW, Kravtsov GM, Lau CF, et al. Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. J Pineal Res, 2013, 55(3): 247-256. |
25. | Chiu SC, Lin YJ, Huang SY, et al. The Role of Intermittent Hypoxia on the Proliferative Inhibition of Rat Cerebellar Astrocytes. PLoS One, 2015, 10(7): e0132263. |
26. | Dringen R, Kussmaul L, Hamprecht B. Rapid clearance of tertiary butyl hydroperoxide by cultured astroglial cells via oxidation of glutathione. Glia, 1998, 23(2): 139-145. |
27. | Kussmaul L, Hamprecht B, Dringen R. The detoxification of cumene hydroperoxide by the glutathione system of cultured astroglial cells hinges on hexose availability for the regeneration of NADPH. J Neurochem, 1999, 73(3): 1246-1253. |
28. | Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med, 2007, 13(6): 688-694. |
29. | Shi Y, Wang G, Li J, et al. Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats. Neuroreport, 2017, 28(17): 1170-1175. |
30. | Li W, Yang S, Yu FY, et al. Hydrogen ameliorates chronic intermittent hypoxia-induced neurocognitive impairment via inhibiting oxidative stress. Brain Res Bull, 2018, 143: 225-233. |
31. | Lam CS, Tipoe GL, So KF, et al. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea. PLoS One, 2015, 10(2): e0117990. |
32. | Abdel-Wahab BA, Abd El-Aziz SM. Ginkgo biloba protects against intermittent hypoxia-induced memory deficits and hippocampal DNA damage in rats. Phytomedicine, 2012, 19(5): 444-450. |
33. | 陈乃洁, 王小婷, 徐峰圣, 等. 加味涤痰汤对慢性间歇性缺氧大鼠认知功能影响及作用机制研究. 福建中医药, 2023, 54(2): 20-25. |
34. | Ling J, Yu Q, Li Y, et al. Edaravone Improves Intermittent Hypoxia-induced cognitive impairment and hippocampal damage in rats. Biol Pharm Bull, 2020, 43(8): 1196-1201. |
35. | 张盼盼, 汪彦辉, 韩晓庆, 等. 依达拉奉对老年阻塞性睡眠呼吸暂停低通气综合征患者血清炎症因子和黏附分子的影响. 中国呼吸与危重监护杂志, 2020, 19(1): 32-35. |
36. | 马晓蓉, 张静宜, 宗运之, 等. 无创呼吸机治疗对阻塞性睡眠呼吸暂停低通气综合征患者骨代谢和氧化应激影响的研究. 中国呼吸与危重监护杂志, 2022, 21(10): 731-736. |
37. | Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci, 2008, 9(1): 65-75. |
38. | Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and alzheimer’s disease. J Alzheimers Dis, 2017, 57(4): 1105-1121. |
39. | Xie H, Leung KL, Chen L, et al. Brain-derived neurotrophic factor rescues and prevents chronic intermittent hypoxia-induced impairment of hippocampal long-term synaptic plasticity. Neurobiol Dis, 2010, 40(1): 155-162. |
40. | Wall AM, Corcoran AE, O'Halloran KD, et al. Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiol Dis, 2014, 62: 8-17. |
41. | Wang J, Xu Z, Xu L, et al. Inhibition of STAT3 signal pathway recovers postsynaptic plasticity to improve cognitive impairment caused by chronic intermittent hypoxia. Sleep Breath, 2023, 27(3): 893-902. |
42. | Xu LH, Xie H, Shi ZH, et al. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory. Antioxid Redox Signal, 2015, 23(9): 695-710. |
43. | Liu ZL, Huang YP, Wang X, et al. The role of ferroptosis in chronic intermittent hypoxia-induced cognitive impairment. Sleep Breath, 2023, 27(5): 1725-1732. |
44. | Cha J, Zea-Hernandez JA, Sin S, et al. The effects of obstructive sleep apnea syndrome on the dentate gyrus and learning and memory in children. J Neurosci, 2017, 37(16): 4280-4288. |
45. | Khuu MA, Pagan CM, Nallamothu T, et al. Intermittent hypoxia disrupts adult neurogenesis and synaptic plasticity in the dentate gyrus. J Neurosci, 2019, 39(7): 1320-1331. |
46. | Gu XQ, Haddad GG. Maturation of neuronal excitability in hippocampal neurons of mice chronically exposed to cyclic hypoxia. Am J Physiol Cell Physiol, 2003, 284(5): C1156-1163. |
47. | Zhao P, Xue J, Gu XQ, et al. Intermittent hypoxia modulates Na+ channel expression in developing mouse brain. Int J Dev Neurosci, 2005, 23(4): 327-333. |
48. | Wang Y, Zhang SX, Gozal D. Reactive oxygen species and the brain in sleep apnea. Respir Physiol Neurobiol, 2010, 174(3): 307-316. |
49. | Gilland E, Puka-Sundvall M, Hillered L, et al. Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cereb Blood Flow Metab, 1998, 18(3): 297-304. |
50. | Maiti P, Singh SB, Sharma AK, et al. Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int, 2006, 49(8): 709-716. |
51. | Schild L, Huppelsberg J, Kahlert S, et al. Brain mitochondria are primed by moderate Ca2+ rise upon hypoxia/reoxygenation for functional breakdown and morphological disintegration. J Biol Chem, 2003, 278(28): 25454-25460. |
52. | 蔡凯晋, 曾奕明, 邱建龙. 慢性缺氧/再氧合小鼠脑皮质Nip3表达及其与神经细胞凋亡的关系. 中华神经医学杂志, 2007, 6(11): 1114-1117. |
53. | Puyal J, Ginet V, Clarke PG. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol, 2013, 105: 24-48. |
54. | Yuan J, Kroemer G. Alternative cell death mechanisms in development and beyond. Genes Dev, 2010, 24(23): 2592-2602. |
55. | Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis, 2008, 32(3): 329-339. |
56. | Wang P, Guan YF, Du H, et al. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 2012, 8(1): 77-87. |
57. | Koike M, Shibata M, Tadakoshi M, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol, 2008, 172(2): 454-469. |
58. | Puyal J, Vaslin A, Mottier V, et al. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol, 2009, 66(3): 378-389. |
59. | Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 2008, 4(6): 762-769. |
60. | Xing S, Zhang Y, Li J, et al. Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. Autophagy, 2012, 8(1): 63-76. |
61. | Song S, Tan J, Miao Y, et al. Effect of different levels of intermittent hypoxia on autophagy of hippocampal neurons. Sleep Breath, 2017, 21(3): 791-798. |
62. | Si J, Liu B, Qi K, et al. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. J Ethnopharmacol, 2023, 315: 116677. |
63. | You LH, Yan CZ, Zheng BJ, et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death Dis, 2017, 8(3): e2676. |
64. | Zhao YS, Zhang LH, Yu PP, et al. Ceruloplasmin, a Potential therapeutic agent for Alzheimer’s disease. Antioxid Redox Signal, 2018, 28(14): 1323-1337. |
65. | Wang P, Cui Y, Ren Q, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis, 2021, 12(5): 447. |
66. | Zhao Y, Xin Z, Li N, et al. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic Biol Med, 2018, 124: 1-11. |
67. | Zhao YS, Tan M, Song JX, et al. Involvement of hepcidin in cognitive damage induced by chronic intermittent hypoxia in mice. Oxid Med Cell Longev, 2021, 2021: 8520967. |
68. | Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol, 2014, 5: 38. |
69. | Pelizzoni I, Macco R, Morini MF, et al. Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell, 2011, 10(1): 172-183. |
70. | Tao LX, Huang XT, Chen YT, et al. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol Sin, 2016, 37(11): 1391-1400. |
71. | An JR, Zhao YS, Luo LF, et al. Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia. Life Sci, 2020, 250: 117573. |
72. | Song JX, Zhao YS, Zhen YQ, et al. Banxia-Houpu decoction diminishes iron toxicity damage in heart induced by chronic intermittent hypoxia. Pharm Biol, 2022, 60(1): 609-620. |
73. | Wu WS, Zhao YS, Shi ZH, et al. Mitochondrial ferritin attenuates β-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxid Redox Signal, 2013, 18(2): 158-169. |
74. | You L, Yu PP, Dong T, et al. Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells. Cell Death Dis, 2022, 13(8): 667. |
75. | Liberto CM, Albrecht PJ, Herx LM, et al. Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem, 2004, 89(5): 1092-1100. |
76. | Kurz C, Walker L, Rauchmann BS, et al. Dysfunction of the blood-brain barrier in Alzheimer’s disease: Evidence from human studies. Neuropathol Appl Neurobiol, 2022, 48(3): e12782. |
77. | Israel LP, Benharoch D, Gopas J, et al. A pro-inflammatory role for nuclear factor kappa B in childhood obstructive sleep apnea syndrome. Sleep, 2013, 36(12): 1947-1955. |
78. | 王思远, 李振光, 李梦凡. 阻塞性睡眠呼吸暂停与血管性认知损害: 血脑屏障受损的作用. 国际脑血管病杂志, 2023, 31(7): 542-545. |
79. | Knox EG, Aburto MR, Clarke G, et al. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry, 2022, 27(6): 2659-2673. |
80. | Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier. Sleep Med Rev, 2014, 18(1): 35-48. |
81. | Taheri S, Gasparovic C, Huisa BN, et al. Blood-brain barrier permeability abnormalities in vascular cognitive impairment. Stroke, 2011, 42(8): 2158-2163. |
82. | Ueno M, Chiba Y, Murakami R, et al. Disturbance of intracerebral fluid clearance and blood-brain barrier in vascular cognitive impairment. Int J Mol Sci, 2019, 20(10): 2600. |
83. | Toyama K, Spin JM, Tsao PS. Role of microRNAs on blood brain barrier dysfunction in vascular cognitive impairment. Curr Drug Deliv, 2017, 14(6): 744-757. |
84. | Rajeev V, Fann DY, Dinh QN, et al. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics, 2022, 12(4): 1639-1658. |
85. | Coimbra-Costa D, Garzón F, Alva N, et al. Intermittent hypobaric hypoxic preconditioning provides neuroprotection by increasing antioxidant activity, erythropoietin expression and preventing apoptosis and astrogliosis in the brain of adult rats exposed to acute severe hypoxia. Int J Mol Sci, 2021, 22(10): 5272. |
86. | Zhang HY, Wang Y, He Y, et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflammation, 2020, 17(1): 200. |
87. | She N, Shi Y, Feng Y, et al. NLRP3 inflammasome regulates astrocyte transformation in brain injury induced by chronic intermittent hypoxia. BMC Neurosci, 2022, 23(1): 70. |
88. | Angelova PR, Kasymov V, Christie I, et al. Functional oxygen sensitivity of astrocytes. J Neurosci, 2015, 35(29): 10460-10473. |
89. | Wilson JX. Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol, 1997, 75(10-11): 1149-1163. |
90. | Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem, 2000, 267(16): 4912-4916. |
91. | Langeveld CH, Jongenelen CA, Schepens E, et al. Cultured rat striatal and cortical astrocytes protect mesencephalic dopaminergic neurons against hydrogen peroxide toxicity independent of their effect on neuronal development. Neurosci Lett, 1995, 192(1): 13-16. |
92. | Rosenberg PA, Aizenman E. Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett, 1989, 103(2): 162-168. |
93. | 刘仁帅, 罗悯, 殷梅. 慢性间歇性缺氧致认知功能障碍与小胶质细胞相关性的研究进展. 神经疾病与精神卫生, 2021, 21(10): 751-755. |
94. | Shao M, Jin M, Xu S, et al. Exosomes from long noncoding RNA-Gm37494-ADSCs repair spinal cord injury via shifting microglial M1/M2 polarization. Inflammation, 2020, 43(4): 1536-1547. |
95. | Wang H, Wang X, Shen Y, et al. SENP1 modulates chronic intermittent hypoxia-induced inflammation of microglia and neuronal injury by inhibiting TOM1 pathway. Int Immunopharmacol, 2023, 119: 110230. |
96. | Juurlink BH. Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci Biobehav Rev, 1997, 21(2): 151-166. |
97. | Ludwin SK. The pathobiology of the oligodendrocyte. J Neuropathol Exp Neurol, 1997, 56(2): 111-124. |
98. | Mabuchi T, Kitagawa K, Ohtsuki T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke, 2000, 31(7): 1735-1743. |
99. | Masumura M, Hata R, Nagai Y, et al. Oligodendroglial cell death with DNA fragmentation in the white matter under chronic cerebral hypoperfusion: comparison between normotensive and spontaneously hypertensive rats. Neurosci Res, 2001, 39(4): 401-412. |
100. | Kumar R, Pham TT, Macey PM, et al. Abnormal myelin and axonal integrity in recently diagnosed patients with obstructive sleep apnea. Sleep, 2014, 37(4): 723-732. |
101. | 尚粉青, 郭瑄, 顾兴. 阻塞性睡眠呼吸暂停低通气综合征患者血清miRNA-92a水平与血管内皮功能损伤的关系研究. 中国呼吸与危重监护杂志, 2021, 20(9): 625-631. |
102. | 张伟三, 张蔷, 张蕴, 等. 慢性间歇低氧老龄大鼠脑血管内皮功能的研究. 中华老年医学杂志, 2010, 29(7): 601-604. |
103. | 陈蕾, 刘辉国. 睡眠呼吸暂停致缺血性脑卒中病理机制的研究进展. 中国呼吸与危重监护杂志, 2013, 12(3): 316-318. |
104. | 张苗怡, 唐杰, 付建辉. 小动脉硬化性脑小血管病与睡眠障碍. 国际脑血管病杂志, 2017, 25(2): 165-169. |
105. | Motamedi V, Kanefsky R, Matsangas P, et al. Elevated tau and interleukin-6 concentrations in adults with obstructive sleep apnea. Sleep Med, 2018, 43: 71-76. |
106. | Duncombe J, Kitamura A, Hase Y, et al. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond), 2017, 131(19): 2451-2468. |
107. | Park JH, Hong JH, Lee SW, et al. The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer’s disease: A positron emission tomography study in rats. Sci Rep, 2019, 9(1): 14102. |
- 1. 何权瀛, 陈宝元, 韩芳. 睡眠呼吸病学. 第2版. 北京: 人民卫生出版社, 2022: 4-8.
- 2. Rae C, Bartlett DJ, Yang Q, et al. Dynamic changes in brain bioenergetics during obstructive sleep apnea. J Cereb Blood Flow Metab, 2009, 29(8): 1421-1428.
- 3. Mubashir T, Abrahamyan L, Niazi A, et al. The prevalence of obstructive sleep apnea in mild cognitive impairment: a systematic review. BMC Neurol, 2019, 19(1): 195.
- 4. 覃丽霞, 钟清清, 陆怡安, 等. 老年阻塞性睡眠呼吸暂停合并认知功能障碍患者睡眠及脑功能状态特点. 中国临床新医学, 2024, 17(1): 12-18.
- 5. 何权瀛. 阻塞性睡眠呼吸暂停综合征何权瀛2022观点. 第1版. 北京: 科学技术文献出版社, 2022: 28-43.
- 6. Macey PM, Henderson LA, Macey KE, et al. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med, 2002, 166(10): 1382-1387.
- 7. 沈煜斌, 欧茜文, 刘松. 阻塞性睡眠呼吸暂停对脑代谢功能的影响. 中国呼吸与危重监护杂志, 2024, 23(2): 132-137.
- 8. Yang Q, Wang Y, Feng J, et al. Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: the potential roles played by microglia. Neuropsychiatr Dis Treat, 2013, 9: 1077-1086.
- 9. Nair D, Ramesh V, Li RC, et al. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse. J Neurochem, 2013, 127(4): 531-540.
- 10. Aviles-Reyes RX, Angelo MF, Villarreal A, et al. Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem, 2010, 112(4): 854-869.
- 11. Lewén A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma, 2000, 17(10): 871-890.
- 12. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410(6824): 37-40.
- 13. Minden A, Karin M. Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta, 1997, 1333(2): F85-104.
- 14. Zhuang S, Schnellmann RG. A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther, 2006, 319(3): 991-997.
- 15. 张盼盼, 韩晓庆, 李琳, 等. 间歇低氧大鼠细胞外信号调节激酶与认知功能变化. 中国神经精神疾病杂志, 2014, 40(9): 517-521.
- 16. 张永林, 张媛媛. 阻塞性睡眠呼吸暂停低通气综合征间歇性低氧血症致认知障碍发病机制研究进展. 中华临床医师杂志(电子版), 2016(23): 3622-3625.
- 17. 赵雅宁, 王红阳, 李琳, 等. 不同程度间歇性低氧对大鼠不同脑区 Bax、Bcl-2表达的影响. 中国老年学杂志, 2015(1): 162-163.
- 18. Coimbra-Costa D, Alva N, Duran M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol, 2017, 12: 216-225.
- 19. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol, 2000, 62(6): 649-671.
- 20. Porter NA. Chemistry of lipid peroxidation. Methods Enzymol, 1984, 105: 273-282.
- 21. Zauner A, Daugherty WP, Bullock MR, et al. Brain oxygenation and energy metabolism: part I-biological function and pathophysiology. Neurosurgery, 2002, 51(2): 289-301; discussion 302.
- 22. Hardeland R. Neuroprotection by radical avoidance: search for suitable agents. Molecules, 2009, 14(12): 5054-5102.
- 23. Blanco S, Hernández R, Franchelli G, et al. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage. Nitric Oxide, 2017, 62: 32-43.
- 24. Hung MW, Kravtsov GM, Lau CF, et al. Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. J Pineal Res, 2013, 55(3): 247-256.
- 25. Chiu SC, Lin YJ, Huang SY, et al. The Role of Intermittent Hypoxia on the Proliferative Inhibition of Rat Cerebellar Astrocytes. PLoS One, 2015, 10(7): e0132263.
- 26. Dringen R, Kussmaul L, Hamprecht B. Rapid clearance of tertiary butyl hydroperoxide by cultured astroglial cells via oxidation of glutathione. Glia, 1998, 23(2): 139-145.
- 27. Kussmaul L, Hamprecht B, Dringen R. The detoxification of cumene hydroperoxide by the glutathione system of cultured astroglial cells hinges on hexose availability for the regeneration of NADPH. J Neurochem, 1999, 73(3): 1246-1253.
- 28. Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med, 2007, 13(6): 688-694.
- 29. Shi Y, Wang G, Li J, et al. Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats. Neuroreport, 2017, 28(17): 1170-1175.
- 30. Li W, Yang S, Yu FY, et al. Hydrogen ameliorates chronic intermittent hypoxia-induced neurocognitive impairment via inhibiting oxidative stress. Brain Res Bull, 2018, 143: 225-233.
- 31. Lam CS, Tipoe GL, So KF, et al. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea. PLoS One, 2015, 10(2): e0117990.
- 32. Abdel-Wahab BA, Abd El-Aziz SM. Ginkgo biloba protects against intermittent hypoxia-induced memory deficits and hippocampal DNA damage in rats. Phytomedicine, 2012, 19(5): 444-450.
- 33. 陈乃洁, 王小婷, 徐峰圣, 等. 加味涤痰汤对慢性间歇性缺氧大鼠认知功能影响及作用机制研究. 福建中医药, 2023, 54(2): 20-25.
- 34. Ling J, Yu Q, Li Y, et al. Edaravone Improves Intermittent Hypoxia-induced cognitive impairment and hippocampal damage in rats. Biol Pharm Bull, 2020, 43(8): 1196-1201.
- 35. 张盼盼, 汪彦辉, 韩晓庆, 等. 依达拉奉对老年阻塞性睡眠呼吸暂停低通气综合征患者血清炎症因子和黏附分子的影响. 中国呼吸与危重监护杂志, 2020, 19(1): 32-35.
- 36. 马晓蓉, 张静宜, 宗运之, 等. 无创呼吸机治疗对阻塞性睡眠呼吸暂停低通气综合征患者骨代谢和氧化应激影响的研究. 中国呼吸与危重监护杂志, 2022, 21(10): 731-736.
- 37. Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci, 2008, 9(1): 65-75.
- 38. Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and alzheimer’s disease. J Alzheimers Dis, 2017, 57(4): 1105-1121.
- 39. Xie H, Leung KL, Chen L, et al. Brain-derived neurotrophic factor rescues and prevents chronic intermittent hypoxia-induced impairment of hippocampal long-term synaptic plasticity. Neurobiol Dis, 2010, 40(1): 155-162.
- 40. Wall AM, Corcoran AE, O'Halloran KD, et al. Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiol Dis, 2014, 62: 8-17.
- 41. Wang J, Xu Z, Xu L, et al. Inhibition of STAT3 signal pathway recovers postsynaptic plasticity to improve cognitive impairment caused by chronic intermittent hypoxia. Sleep Breath, 2023, 27(3): 893-902.
- 42. Xu LH, Xie H, Shi ZH, et al. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory. Antioxid Redox Signal, 2015, 23(9): 695-710.
- 43. Liu ZL, Huang YP, Wang X, et al. The role of ferroptosis in chronic intermittent hypoxia-induced cognitive impairment. Sleep Breath, 2023, 27(5): 1725-1732.
- 44. Cha J, Zea-Hernandez JA, Sin S, et al. The effects of obstructive sleep apnea syndrome on the dentate gyrus and learning and memory in children. J Neurosci, 2017, 37(16): 4280-4288.
- 45. Khuu MA, Pagan CM, Nallamothu T, et al. Intermittent hypoxia disrupts adult neurogenesis and synaptic plasticity in the dentate gyrus. J Neurosci, 2019, 39(7): 1320-1331.
- 46. Gu XQ, Haddad GG. Maturation of neuronal excitability in hippocampal neurons of mice chronically exposed to cyclic hypoxia. Am J Physiol Cell Physiol, 2003, 284(5): C1156-1163.
- 47. Zhao P, Xue J, Gu XQ, et al. Intermittent hypoxia modulates Na+ channel expression in developing mouse brain. Int J Dev Neurosci, 2005, 23(4): 327-333.
- 48. Wang Y, Zhang SX, Gozal D. Reactive oxygen species and the brain in sleep apnea. Respir Physiol Neurobiol, 2010, 174(3): 307-316.
- 49. Gilland E, Puka-Sundvall M, Hillered L, et al. Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cereb Blood Flow Metab, 1998, 18(3): 297-304.
- 50. Maiti P, Singh SB, Sharma AK, et al. Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int, 2006, 49(8): 709-716.
- 51. Schild L, Huppelsberg J, Kahlert S, et al. Brain mitochondria are primed by moderate Ca2+ rise upon hypoxia/reoxygenation for functional breakdown and morphological disintegration. J Biol Chem, 2003, 278(28): 25454-25460.
- 52. 蔡凯晋, 曾奕明, 邱建龙. 慢性缺氧/再氧合小鼠脑皮质Nip3表达及其与神经细胞凋亡的关系. 中华神经医学杂志, 2007, 6(11): 1114-1117.
- 53. Puyal J, Ginet V, Clarke PG. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol, 2013, 105: 24-48.
- 54. Yuan J, Kroemer G. Alternative cell death mechanisms in development and beyond. Genes Dev, 2010, 24(23): 2592-2602.
- 55. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis, 2008, 32(3): 329-339.
- 56. Wang P, Guan YF, Du H, et al. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 2012, 8(1): 77-87.
- 57. Koike M, Shibata M, Tadakoshi M, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol, 2008, 172(2): 454-469.
- 58. Puyal J, Vaslin A, Mottier V, et al. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol, 2009, 66(3): 378-389.
- 59. Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 2008, 4(6): 762-769.
- 60. Xing S, Zhang Y, Li J, et al. Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. Autophagy, 2012, 8(1): 63-76.
- 61. Song S, Tan J, Miao Y, et al. Effect of different levels of intermittent hypoxia on autophagy of hippocampal neurons. Sleep Breath, 2017, 21(3): 791-798.
- 62. Si J, Liu B, Qi K, et al. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. J Ethnopharmacol, 2023, 315: 116677.
- 63. You LH, Yan CZ, Zheng BJ, et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death Dis, 2017, 8(3): e2676.
- 64. Zhao YS, Zhang LH, Yu PP, et al. Ceruloplasmin, a Potential therapeutic agent for Alzheimer’s disease. Antioxid Redox Signal, 2018, 28(14): 1323-1337.
- 65. Wang P, Cui Y, Ren Q, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis, 2021, 12(5): 447.
- 66. Zhao Y, Xin Z, Li N, et al. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic Biol Med, 2018, 124: 1-11.
- 67. Zhao YS, Tan M, Song JX, et al. Involvement of hepcidin in cognitive damage induced by chronic intermittent hypoxia in mice. Oxid Med Cell Longev, 2021, 2021: 8520967.
- 68. Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol, 2014, 5: 38.
- 69. Pelizzoni I, Macco R, Morini MF, et al. Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell, 2011, 10(1): 172-183.
- 70. Tao LX, Huang XT, Chen YT, et al. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol Sin, 2016, 37(11): 1391-1400.
- 71. An JR, Zhao YS, Luo LF, et al. Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia. Life Sci, 2020, 250: 117573.
- 72. Song JX, Zhao YS, Zhen YQ, et al. Banxia-Houpu decoction diminishes iron toxicity damage in heart induced by chronic intermittent hypoxia. Pharm Biol, 2022, 60(1): 609-620.
- 73. Wu WS, Zhao YS, Shi ZH, et al. Mitochondrial ferritin attenuates β-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxid Redox Signal, 2013, 18(2): 158-169.
- 74. You L, Yu PP, Dong T, et al. Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells. Cell Death Dis, 2022, 13(8): 667.
- 75. Liberto CM, Albrecht PJ, Herx LM, et al. Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem, 2004, 89(5): 1092-1100.
- 76. Kurz C, Walker L, Rauchmann BS, et al. Dysfunction of the blood-brain barrier in Alzheimer’s disease: Evidence from human studies. Neuropathol Appl Neurobiol, 2022, 48(3): e12782.
- 77. Israel LP, Benharoch D, Gopas J, et al. A pro-inflammatory role for nuclear factor kappa B in childhood obstructive sleep apnea syndrome. Sleep, 2013, 36(12): 1947-1955.
- 78. 王思远, 李振光, 李梦凡. 阻塞性睡眠呼吸暂停与血管性认知损害: 血脑屏障受损的作用. 国际脑血管病杂志, 2023, 31(7): 542-545.
- 79. Knox EG, Aburto MR, Clarke G, et al. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry, 2022, 27(6): 2659-2673.
- 80. Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier. Sleep Med Rev, 2014, 18(1): 35-48.
- 81. Taheri S, Gasparovic C, Huisa BN, et al. Blood-brain barrier permeability abnormalities in vascular cognitive impairment. Stroke, 2011, 42(8): 2158-2163.
- 82. Ueno M, Chiba Y, Murakami R, et al. Disturbance of intracerebral fluid clearance and blood-brain barrier in vascular cognitive impairment. Int J Mol Sci, 2019, 20(10): 2600.
- 83. Toyama K, Spin JM, Tsao PS. Role of microRNAs on blood brain barrier dysfunction in vascular cognitive impairment. Curr Drug Deliv, 2017, 14(6): 744-757.
- 84. Rajeev V, Fann DY, Dinh QN, et al. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics, 2022, 12(4): 1639-1658.
- 85. Coimbra-Costa D, Garzón F, Alva N, et al. Intermittent hypobaric hypoxic preconditioning provides neuroprotection by increasing antioxidant activity, erythropoietin expression and preventing apoptosis and astrogliosis in the brain of adult rats exposed to acute severe hypoxia. Int J Mol Sci, 2021, 22(10): 5272.
- 86. Zhang HY, Wang Y, He Y, et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflammation, 2020, 17(1): 200.
- 87. She N, Shi Y, Feng Y, et al. NLRP3 inflammasome regulates astrocyte transformation in brain injury induced by chronic intermittent hypoxia. BMC Neurosci, 2022, 23(1): 70.
- 88. Angelova PR, Kasymov V, Christie I, et al. Functional oxygen sensitivity of astrocytes. J Neurosci, 2015, 35(29): 10460-10473.
- 89. Wilson JX. Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol, 1997, 75(10-11): 1149-1163.
- 90. Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem, 2000, 267(16): 4912-4916.
- 91. Langeveld CH, Jongenelen CA, Schepens E, et al. Cultured rat striatal and cortical astrocytes protect mesencephalic dopaminergic neurons against hydrogen peroxide toxicity independent of their effect on neuronal development. Neurosci Lett, 1995, 192(1): 13-16.
- 92. Rosenberg PA, Aizenman E. Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett, 1989, 103(2): 162-168.
- 93. 刘仁帅, 罗悯, 殷梅. 慢性间歇性缺氧致认知功能障碍与小胶质细胞相关性的研究进展. 神经疾病与精神卫生, 2021, 21(10): 751-755.
- 94. Shao M, Jin M, Xu S, et al. Exosomes from long noncoding RNA-Gm37494-ADSCs repair spinal cord injury via shifting microglial M1/M2 polarization. Inflammation, 2020, 43(4): 1536-1547.
- 95. Wang H, Wang X, Shen Y, et al. SENP1 modulates chronic intermittent hypoxia-induced inflammation of microglia and neuronal injury by inhibiting TOM1 pathway. Int Immunopharmacol, 2023, 119: 110230.
- 96. Juurlink BH. Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci Biobehav Rev, 1997, 21(2): 151-166.
- 97. Ludwin SK. The pathobiology of the oligodendrocyte. J Neuropathol Exp Neurol, 1997, 56(2): 111-124.
- 98. Mabuchi T, Kitagawa K, Ohtsuki T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke, 2000, 31(7): 1735-1743.
- 99. Masumura M, Hata R, Nagai Y, et al. Oligodendroglial cell death with DNA fragmentation in the white matter under chronic cerebral hypoperfusion: comparison between normotensive and spontaneously hypertensive rats. Neurosci Res, 2001, 39(4): 401-412.
- 100. Kumar R, Pham TT, Macey PM, et al. Abnormal myelin and axonal integrity in recently diagnosed patients with obstructive sleep apnea. Sleep, 2014, 37(4): 723-732.
- 101. 尚粉青, 郭瑄, 顾兴. 阻塞性睡眠呼吸暂停低通气综合征患者血清miRNA-92a水平与血管内皮功能损伤的关系研究. 中国呼吸与危重监护杂志, 2021, 20(9): 625-631.
- 102. 张伟三, 张蔷, 张蕴, 等. 慢性间歇低氧老龄大鼠脑血管内皮功能的研究. 中华老年医学杂志, 2010, 29(7): 601-604.
- 103. 陈蕾, 刘辉国. 睡眠呼吸暂停致缺血性脑卒中病理机制的研究进展. 中国呼吸与危重监护杂志, 2013, 12(3): 316-318.
- 104. 张苗怡, 唐杰, 付建辉. 小动脉硬化性脑小血管病与睡眠障碍. 国际脑血管病杂志, 2017, 25(2): 165-169.
- 105. Motamedi V, Kanefsky R, Matsangas P, et al. Elevated tau and interleukin-6 concentrations in adults with obstructive sleep apnea. Sleep Med, 2018, 43: 71-76.
- 106. Duncombe J, Kitamura A, Hase Y, et al. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond), 2017, 131(19): 2451-2468.
- 107. Park JH, Hong JH, Lee SW, et al. The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer’s disease: A positron emission tomography study in rats. Sci Rep, 2019, 9(1): 14102.
-
Previous Article
脑电图在慢性呼吸系统疾病中的应用价值及研究进展 -
Next Article
细胞焦亡在呼吸道病毒感染脓毒症中的研究进展