Citation: 伍少多, 张逸丹, 李筱妍. 细胞焦亡在呼吸道病毒感染脓毒症中的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2025, 24(3): 225-228. doi: 10.7507/1671-6205.202403003 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Evans L, Rhodes A, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med, 2021, 49(11): e1063-e1143. |
2. | Karakike E, Giamarellos-Bourboulis EJ, Kyprianou M, et al. Coronavirus disease 2019 as cause of viral sepsis: a systematic review and meta-analysis. Crit Care Med, 2021, 49(12): 2042-2057. |
3. | Gu X, Zhou F, Wang Y, et al. Respiratory viral sepsis: epidemiology, pathophysiology, diagnosis and treatment. Eur Respir Rev, 2020, 29(157): 200038. |
4. | Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229): 1054-1062. |
5. | Feng Y, Li M, Yangzhong X, et al. Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem, 2022, 78(4): 721-737. |
6. | Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol, 2021, 21(11): 694-703. |
7. | Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol, 2020, 205(2): 307-312. |
8. | Rodrigues TS, De Sá KSG, Ishimoto A, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med, 2021, 218(3): e20201707. |
9. | Xu Q, Yang Y, Zhang X, et al. Association of pyroptosis and severeness of COVID-19 as revealed by integrated single-cell transcriptome data analysis. Immunoinformatics (Amst), 2022, 6: 100013. |
10. | 徐逸天, 曹彬. 病毒性感染中毒症—一个亟待重视的概念. 中华结核和呼吸杂志, 2021, 44(7): 674-679. |
11. | Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet, 2020, 395(10235): 1517-1520. |
12. | Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, Gorbalenya AE, Baker SC, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 2020, 5(4): 536-544. |
13. | Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol, 2020, 41(12): 1100-1115. |
14. | Ragab D, Salah Eldin H, Taeimah M, et al. The COVID-19 cytokine storm; what we know so far. Front Immunol, 2020, 11: 1446. |
15. | Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest, 2020, 130(5): 2620-2629. |
16. | Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID‐19. J Med Virol, 2020, 92(7): 791-796. |
17. | McGonagle D, Sharif K, O’Regan A, et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev, 2020, 19(6): 102537. |
18. | Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020, 382(18): 1708-1720. |
19. | Kuriakose T, Kanneganti TD. “Pyroptosis in Antiviral Immunity. ” In: Mocarski ES, Mandal P, editors. Alternate Programmed Cell Death Signaling in Antiviral Host Defense. Current Topics in Microbiology and Immunology. Cham: Springer International Publishing (2019), 65-83. |
20. | Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610): 111-116. |
21. | Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics, 2022, 12(9): 4310-4329. |
22. | Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575): 666-671. |
23. | Tan Y, Chen Q, Li X, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res, 2021, 40(1): 153. |
24. | Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol, 2010, 11(12): 1136-1142. |
25. | Sharma AK, Ismail N. Non-canonical inflammasome pathway: the role of cell death and inflammation in ehrlichiosis. Cells, 2023, 12(22): 2597. |
26. | Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521): 187-192. |
27. | Zanoni I, Tan Y, Di Gioia M, et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science, 2016, 352(6290): 1232-1236. |
28. | Yang F, Bettadapura SN, Smeltzer MS, et al. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol Sin, 2022, 43(10): 2462-2473. |
29. | Jiao C, Zhang H, Li H, et al. Caspase-3/GSDME mediated pyroptosis: a potential pathway for sepsis. Int Immunopharmacol, 2023, 124(Pt B): 111022. |
30. | Tsuchiya K. Switching from apoptosis to pyroptosis: gasdermin-elicited inflammation and antitumor immunity. Int J Mol Sci, 2021, 22(1): 426. |
31. | Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020, 368(6494): eaaz7548. |
32. | Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol, 2020, 5(43): eaax7969. |
33. | Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol, 2010, 191(3): 677-691. |
34. | Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663): 1532-1535. |
35. | Zhu C, Wang Y, Liu Q, et al. Dysregulation of neutrophil death in sepsis. Front Immunol, 2022, 13: 963955. |
36. | Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev, 2023, 314(1): 229-249. |
37. | Zhu Y, Chen X, Liu X. NETosis and neutrophil extracellular traps in COVID-19: immunothrombosis and beyond. Front Immunol, 2022, 13: 838011. |
38. | Becker K, Beythien G, de Buhr N, et al. Vasculitis and neutrophil extracellular traps in lungs of golden Syrian hamsters with SARS-CoV-2. Front Immunol, 2021, 12: 640842. |
39. | Al-Kuraishy HM, Al-Gareeb AI, Al-hussaniy HA, et al. Neutrophil extracellular traps (NETs) and Covid-19: a new frontiers for therapeutic modality. Int Immunopharmacol, 2022, 104: 108516. |
40. | Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med, 2020, 217(12): e20201129. |
41. | Wu C, Lu W, Zhang Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity, 2019, 50(6): 1401-1411,e4. |
42. | Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers, 2016, 2(1): 16037. |
43. | Grover SP, Mackman N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol, 2018, 38(4): 709-725. |
44. | Iba T, Levy JH, Levi M, et al. Coagulopathy in COVID‐19. J Thromb Haemost, 2020, 18(9): 2103-2109. |
45. | Skendros P, Mitsios A, Chrysanthopoulou A, et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest, 2020, 130(11): 6151-6157. |
46. | Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol, 2020, 7(6): e438-e440. |
47. | 张连芳, 谢榕城, 林雪烽, 等. 重症监护室内重症肺炎患者新发血栓事件和病死率的研究分析. 中国呼吸与危重监护杂志, 2024, 23(1): 7-14. |
48. | Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood, 2020, 135(23): 2033-2040. |
49. | Man SM. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol, 2018, 15(12): 721-737. |
50. | Yeoh YK, Zuo T, Lui GCY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, 70(4): 698-706. |
51. | Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ, 2019, 26(1): 99-114. |
52. | Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, 2020, 584(7821): 463-469. |
53. | Hantoushzadeh S, Norooznezhad AH. Possible cause of inflammatory storm and septic shock in patients diagnosed with (COVID-19). Arch Med Res, 2020, 51(4): 347-348. |
54. | 李俏琦, 杨茜, 高玲, 等. 细胞因子风暴与病毒性肺炎. 中国呼吸与危重监护杂志, 2021, 20(1): 70-75. |
- 1. Evans L, Rhodes A, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med, 2021, 49(11): e1063-e1143.
- 2. Karakike E, Giamarellos-Bourboulis EJ, Kyprianou M, et al. Coronavirus disease 2019 as cause of viral sepsis: a systematic review and meta-analysis. Crit Care Med, 2021, 49(12): 2042-2057.
- 3. Gu X, Zhou F, Wang Y, et al. Respiratory viral sepsis: epidemiology, pathophysiology, diagnosis and treatment. Eur Respir Rev, 2020, 29(157): 200038.
- 4. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229): 1054-1062.
- 5. Feng Y, Li M, Yangzhong X, et al. Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem, 2022, 78(4): 721-737.
- 6. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol, 2021, 21(11): 694-703.
- 7. Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol, 2020, 205(2): 307-312.
- 8. Rodrigues TS, De Sá KSG, Ishimoto A, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med, 2021, 218(3): e20201707.
- 9. Xu Q, Yang Y, Zhang X, et al. Association of pyroptosis and severeness of COVID-19 as revealed by integrated single-cell transcriptome data analysis. Immunoinformatics (Amst), 2022, 6: 100013.
- 10. 徐逸天, 曹彬. 病毒性感染中毒症—一个亟待重视的概念. 中华结核和呼吸杂志, 2021, 44(7): 674-679.
- 11. Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet, 2020, 395(10235): 1517-1520.
- 12. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, Gorbalenya AE, Baker SC, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 2020, 5(4): 536-544.
- 13. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol, 2020, 41(12): 1100-1115.
- 14. Ragab D, Salah Eldin H, Taeimah M, et al. The COVID-19 cytokine storm; what we know so far. Front Immunol, 2020, 11: 1446.
- 15. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest, 2020, 130(5): 2620-2629.
- 16. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID‐19. J Med Virol, 2020, 92(7): 791-796.
- 17. McGonagle D, Sharif K, O’Regan A, et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev, 2020, 19(6): 102537.
- 18. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020, 382(18): 1708-1720.
- 19. Kuriakose T, Kanneganti TD. “Pyroptosis in Antiviral Immunity. ” In: Mocarski ES, Mandal P, editors. Alternate Programmed Cell Death Signaling in Antiviral Host Defense. Current Topics in Microbiology and Immunology. Cham: Springer International Publishing (2019), 65-83.
- 20. Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610): 111-116.
- 21. Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics, 2022, 12(9): 4310-4329.
- 22. Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575): 666-671.
- 23. Tan Y, Chen Q, Li X, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res, 2021, 40(1): 153.
- 24. Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol, 2010, 11(12): 1136-1142.
- 25. Sharma AK, Ismail N. Non-canonical inflammasome pathway: the role of cell death and inflammation in ehrlichiosis. Cells, 2023, 12(22): 2597.
- 26. Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521): 187-192.
- 27. Zanoni I, Tan Y, Di Gioia M, et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science, 2016, 352(6290): 1232-1236.
- 28. Yang F, Bettadapura SN, Smeltzer MS, et al. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol Sin, 2022, 43(10): 2462-2473.
- 29. Jiao C, Zhang H, Li H, et al. Caspase-3/GSDME mediated pyroptosis: a potential pathway for sepsis. Int Immunopharmacol, 2023, 124(Pt B): 111022.
- 30. Tsuchiya K. Switching from apoptosis to pyroptosis: gasdermin-elicited inflammation and antitumor immunity. Int J Mol Sci, 2021, 22(1): 426.
- 31. Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020, 368(6494): eaaz7548.
- 32. Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol, 2020, 5(43): eaax7969.
- 33. Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol, 2010, 191(3): 677-691.
- 34. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663): 1532-1535.
- 35. Zhu C, Wang Y, Liu Q, et al. Dysregulation of neutrophil death in sepsis. Front Immunol, 2022, 13: 963955.
- 36. Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev, 2023, 314(1): 229-249.
- 37. Zhu Y, Chen X, Liu X. NETosis and neutrophil extracellular traps in COVID-19: immunothrombosis and beyond. Front Immunol, 2022, 13: 838011.
- 38. Becker K, Beythien G, de Buhr N, et al. Vasculitis and neutrophil extracellular traps in lungs of golden Syrian hamsters with SARS-CoV-2. Front Immunol, 2021, 12: 640842.
- 39. Al-Kuraishy HM, Al-Gareeb AI, Al-hussaniy HA, et al. Neutrophil extracellular traps (NETs) and Covid-19: a new frontiers for therapeutic modality. Int Immunopharmacol, 2022, 104: 108516.
- 40. Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med, 2020, 217(12): e20201129.
- 41. Wu C, Lu W, Zhang Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity, 2019, 50(6): 1401-1411,e4.
- 42. Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers, 2016, 2(1): 16037.
- 43. Grover SP, Mackman N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol, 2018, 38(4): 709-725.
- 44. Iba T, Levy JH, Levi M, et al. Coagulopathy in COVID‐19. J Thromb Haemost, 2020, 18(9): 2103-2109.
- 45. Skendros P, Mitsios A, Chrysanthopoulou A, et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest, 2020, 130(11): 6151-6157.
- 46. Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol, 2020, 7(6): e438-e440.
- 47. 张连芳, 谢榕城, 林雪烽, 等. 重症监护室内重症肺炎患者新发血栓事件和病死率的研究分析. 中国呼吸与危重监护杂志, 2024, 23(1): 7-14.
- 48. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood, 2020, 135(23): 2033-2040.
- 49. Man SM. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol, 2018, 15(12): 721-737.
- 50. Yeoh YK, Zuo T, Lui GCY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, 70(4): 698-706.
- 51. Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ, 2019, 26(1): 99-114.
- 52. Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, 2020, 584(7821): 463-469.
- 53. Hantoushzadeh S, Norooznezhad AH. Possible cause of inflammatory storm and septic shock in patients diagnosed with (COVID-19). Arch Med Res, 2020, 51(4): 347-348.
- 54. 李俏琦, 杨茜, 高玲, 等. 细胞因子风暴与病毒性肺炎. 中国呼吸与危重监护杂志, 2021, 20(1): 70-75.
-
Previous Article
慢性间歇性低氧导致认知障碍的细胞机制研究进展