Objective To investigate the effect of the 8-bromum-cyclic adenosine monophosphate (8-Br-cAMP) on the telomerase activity and changes of cell cycle in retinoblastoma (RB) cells. Methods The cultured RB cells were divided into the experimental group (8-Br-cAMP) and control group. After cultured for 24, 48 and 72 hours in vitro, the telomerase activity of RB cells was detected by polymerase chain reaction enzyme-linked immunosorbent assay (PCR-ELISA) and the changes of cell cycle were detected by flow-cytometry. Results The difference of telomerase activity was significant between the experimental groups and control group (Plt;0.01). There was a negative correlation between the A value of absorbance and the time in the experimental groups (r=-0.778 9, F=33.936, Plt;0.01). The changes of the cell cycle were that the percentages increased in G1 phase and decreased in S phases. Conclusion 8-Br-cAMP may weaken telomerase activity, affect the cell cycle, and inhibit the proliferation of RB cells. (Chin J Ocul Fundus Dis,2004,20:358-360)
Objective To know the abnormal expression of the cell cycle-regulated proteins in pancreatic adenocarcinoma and their effect on tumor cell growth. Methods The expression of p16, p21, Rb and p53 protein in 47 cases were investigated by immunohistochemistry with wet autoclave pretreatment for antigen retriaval. Furthermore, tumor growth index were assessed by a novel anti-ki-67 antibody (ki-s5). Results All the expression of p53, p16, p21 and Rb protein were the nuclear stainning. The positive rates of p53, p16, p21 and Rb protein were 55%, 53%, 74% and 98% respectively. There was negative correlation between of p16, p21 or Rb protein expression and ki-67 growth index. No relation of p53 protein stainning and the expression of p21 protein was found. Conclusion In pancreatic adenocarcinoma, the negative expression of p16 protein and p21 protein may play an important role in tumor cell growth, but tumor proliferation caused by abnormality of Rb protein is rare. The expression of p21 protein was not associated with the expression of p53 protein.
ObjectiveTo analyze the expression and clinical significance of cyclin-dependent kinase 1 (CDK1) in lung adenocarcinoma by bioinformatics.MethodsBased on the gene expression data of lung adenocarcinoma patients in The Cancer Genome Atlas (TCGA), the differential expression of CDK1 in lung adenocarcinoma tissues and normal lung tissues was analyzed. The expression of CDK1 gene in lung adenocarcinoma was analyzed by UALCAN at different angles. Survival analysis of different levels of CDK1 gene expression in lung adenocarcinoma was performed using Kaplan-Meier Plotter. Correlation Cox analysis of CDK1 expression and overall survival was based on clinical data of lung adenocarcinoma in TCGA. Gene set enrichment analysis was performed on gene sequences related to CDK1 expression in clinical cases. The protein interaction network of CDK1 from Homo sapiens was obtained by STRING. CDK1-related gene proteins were obtained and analyzed by the web server Gene Expression Profiling Interactive Analysis (GEPIA).ResultsBased on the analysis of TCGA gene expression data, CDK1 expression in lung adenocarcinoma was higher than that in normal lung tissues. UALCAN analysis showed that high CDK1 expression may be associated with smoking. Survival analysis indicated that when CDK1 gene was highly expressed, patients with lung adenocarcinoma had a poor prognosis. Univariate and multivariate Cox regression analysis of CDK1 expression and overall survival showed that high CDK1 expression was an independent risk factor for survival of patients with lung adenocarcinoma. Gene set enrichment analysis revealed that high CDK1 expression was closely related to DNA replication, cell cycle, cancer pathway and p53 signaling pathway.ConclusionCDK1 may be a potential molecular marker for prognosis of lung adenocarcinoma. In addition, CDK1 regulation may play an important role in DNA replication, cell cycle, cancer pathway and p53 signaling pathway in lung adenocarcinoma.
Objective To observe the replicative senescence of rat articular chondrocyte cultured in vitro so as to provide reference for the succeeding experiment of using medicine interfere and reverse the cataplasia of tissue engineering cartilage or probing cataplasia mechanism.Methods Different generations(P1, P2, P3 and P4) of the chondrocytes were detected with the methods of histochemistry for β-galactosidase (β-gal), electronmicroscope for ultromicrostructure, immunocytochemistry for proliferating cell nuclear antigen (PCNA),alcian blue stain for content and structure of sulfatglycosaminoglycan (GAG) of extracellular matrix (ECM),reverse transcriptionpolymerase chain reaction (RTPCR) for content of collagen Ⅱ,flow cytometry for cell life cycle and proliferative index(PI) to observe senescence of chondrocytes.Results In the 4th passage,the chondrocytes emerging quantitively positive express of β-gal,cyto-architecture cataplasia such as caryoplasm ratio increasing and karyopycnosis emerging under electronmicroscope ,cell life cycle being detented on G1 phase(83.8%),while in P1, P2, P3 the content of G1 phase was 79.1%, 79.2%, 80.8% respectively. In the 4th passage, PI decreased(16.2%),while in P1, P2, P3, it was 20.9%, 20.8%, 19.2%. The positive percentage of PCNA,the content of GAG(long chain molecule) and the positive expression of collagen Ⅱ diminished,all detections above were significantly different (Plt;0.01) when compared the 4th passage with the preceding passages.Conclusion Chondrocytes show the onset of senescence in the 4th passage.
Purpose To study changes of cell cycle of vascular endothelial cell in non-proliferative diabetic retinopathy. Methods Alloxan induced Wistar-rats were employed and immunohistochemistry,Western blotting methods were used. Results The vascular endothelial cells of retinas of 8~20 weeks diabetic rats were observe to be cyclinD1,cyclinD3,cyclinB1,p21 and p27 positive stained with light and electronmicroscopies.CyclinE immuno-stained vascular endothelial cells was observed occasionally.Meanwhile,the evidences of morphologic changes of the vascular en dothelial cells were proved:less plasma,thinner cell,more bubble organelles than those of controls.But,the ultra-structures of pericytes and other type of retinal cells did not change and they also immunostain negative.Komas blue and Western blotting methods also proved that the vascular endothelial cells of retina of 20th week diabetic rats expressed cyclinD1,cyclinB1,p21 and p27 protein. Conclusion Glucose induced retinal vascular endothelial cells of 8~20th weeks diabetic rats enter cell cycle and were arrested at G1/S restriction point.This study also suggested that retinal vascular endothelial cells may possess the ability to resist glucose damage and mechanism of selfstability during very early stage of diabetes. (Chin J Ocul Fundus Dis,2000,16:173-176)
Objective To explore effects of zinc on the contents of cycl in D2, cycl in-dependent kinase 4 (CDK4), and their DNA and total cellular protein in human umbil ical cord blood-drived mesenchymal stem cells (hUCBMSCs). Methods hUCBMSCs were isolated and cultured by density gradient centrifugation adherence method in vitro. At the serial subcultivation, the hUCBMSCs were randomly divided into 7 groups. In control group, hUCBMSCs were cultured with DMEM medium (containing 15%FBS). In treatment groups, hUCBMSCs were cultured with DMEM medium (containing 15%FBS plusZnSO4•7H2O). The final concentrations of zinc were 0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 mg/L, respectively. The cellular surface antigens of CD29, CD34, CD44, and CD45 at the 3rd generation of hUCBMSCs were detected by flow cytometry. MTT assay was used to detect cell activity of the 3rd generation of hUCBMSCs. The optimum concentration of zinc was selected by the results of MTT as experimental group. The cell growth curves of experimental group and control group were drown by counting cell. The cell surface antigen, reproductive cycle, and DNA content were detected by flow cytometry motheds. The contents of cycl in D2 and CDK4 were detected by Western blot method. Results The positive expression rates of CD29 and CD44 were more than 70% in hUCBMSCs. The cell activity of 2.5 mg/L treatment group was superior to other treatment groups, as experimental group. At 7, 14, and 28 days, the contents of DNA, total cellular protein, cycl in D2, and CDK4 of hUCBMSCs were significantly higher in experimental group than those in control group (P lt; 0.01). The percentage of hUCBMSCs at S stage and prol iferation index in experimental group were also significantly higher than those in control group (P lt; 0.01). Conclusion Zinc (0.5-4.5 mg/L) has the promoting effect on the hUCBMSCs activity, and 2.5 mg/L is the optimal concentration. Zinc (2.5 mg/L) can accelerate the prol iferation and DNA reproduction of hUCBMSCs and increase the contents of cycl in D2 , CDK4, and cellular total protein.
Objective To investigate cell cycle as a new tool to evaluate the biocompatibility of biomaterials.Methods The cell cycle and the expression of related genes were analyzed by the methods of immunocytochemistry, protein blotting, RT PCR and flow cytometry. Results The physical properteis, chemical properties and topological properities of biomaterials could not only influence cell cycle of the cells attached onto biomaterials but also affect the expression of related genes of target cells. Conclusion As an important extension of routine proliferation epxeriments, the study of cell cycle control will be great help for us to to study the cell group as an organic society. It revealed the balance between cell proliferation, cell differentiation and apotosis. It is suggested that the study of cell cycle control will play a key role in the research of tissue engineering.
ObjectiveTo construct DPC4 gene recombinant expression vector and to study the inhibitory effect of DPC4 on the growth of human pancreatic adenocarcinoma cell line (PC3) cells.MethodsDPC4 cDNA was amplified from K562 cell line using RTPCR, and was cloned into the pcDNA3.1 vector to construct a recombinant expression vector plasmid pcDNA3.1DPC4. The recombinant expression plasmid was transferred into PC3 cells by liposome method. After G418 selection, cell cycle and apoptosis were assessed by flow cytometry, then the cell growth rate was estimated by cell count. The cells being not transferred plasmid and transferred pcDNA3.1 plasmid were used as controls.ResultsThe DPC4 gene recombinant expression vector was constructed. Wildtype DPC4 gene attributed to the increase of G1 phase cells and the decrease of S phase cells in PC3 cells,and could inhibit the growth of PC3 cells, the cell growth rates was reduced to 34.3%-41.1% of that of the controls, but cell apoptosis was not observed on all groups. ConclusionWildtype DPC4 gene could inhibit the proliferation of human pancreatic adenocarcinoma cells and could become one of the target genes of pancreas adenocarcinoma gene therapy
Objective To investigate the effect on proliferation and apoptosis of vascular endothelial cells exposed to high glucose. Methods The cultured human umbilical vein endothelial cells (HUVEC) were treated with high glucose at concentrations of 10,20,30,40,50 mmol/L for 2,4,6,8,10,12,14 days,cpm value was studied by using tritium-labelled thymidine deoxyribose(3H-TdR)incorporation assay.Flow cytometry was used to detect apoptosis index,proliferation index and cell cycle. Results Treated with high glucose,the proliferation index and cpm were significantly reduced in a dose and time dependent manner than the control groups(Plt;0.05).The apoptosis index of HUVEC were higher compared with the control groups(Plt;0.05).The percent of the cultured cells in G1 phase in all high glucose groups were increased,the percent in S phase were largely decreased(Plt;0.05). Conclusion Exposed to high glucose,the apoptosis of HUVEC was accelerated and the suppressive effect of high glucose on the proliferation of HUVEC was observed.Endothelial cells were possibly arrested in G1/S checkpoint. (Chin J Ocul Fundus Dis,2000,16:177-180)
Objective To investigate the effects of NGF on the prol iferation, mitotic cycle, collagen synthesis and migration of human dermal fibroblasts (HDFs), and to explore the function of NGF on the wound heal ing. Methods The 3rd generation of HDFs were incubated with various concentrations of NGF (0, 25, 50, 100, 200 and 400 ng/mL), the cell prol iferation was measured with MTT assay. After treated with NGF at 0, 100 ng/mL, the cell cycle of HDFs was determined by flow cytometry (FCM). Hydroxyprol ine and real-time fluorescence quantitative PCR (FQ-PCR) were used to measure collagen synthesis at protein level and mRNA level respectively. The in vitro cell scratch wound model was set up to observe the effect of NGF (0, 50, 100 and 200 ng/mL) on the migration of HDFs after 24 hours of culture. Results Absorbance value of HDFs for different concentrations of NGF (0, 25, 50, 100, 200, and 400 ng/ mL) showed that NGF did not influence the prol iferation of HDFs (P gt; 0.05). When HDFs were treated with NGF at 0 and 100 ng/mL, the result of FCM analysis showed that percentage of HDFs in G0/G1, S, G2/M phases were not changed (P gt; 0.05). Compared with control group, the expression of Col I and Col III were not significantly different, measured by both hydroxyprol ine and FQ-PCR (P gt; 0.05). The rates of HDFs’ migration at various concentrations of NGF (0, 50, 100, 200 ng/ mL) were 52.12% ± 6.50%, 80.67% ± 8.51%, 66.33% ± 3.58%, and 61.19% ± 0.97%, respectively, indicating that NGF could significantly enhanced the migration of HDFs at 50 and 100 ng/mL (P lt; 0.05). Conclusion NGF does not influence prol iferation, mitotic cycle and collagen synthesis of HDFs, but significantly enhanced migration in an in vitro model of wounded fibroblasts.