In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTTPCG). We experimentally verified the detection of blood pressure based on PWTTPCG and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTTPCG. The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy.
Wearable devices bring us an innovative human-computer interaction which plays an irreplaceable role in enhancing the users’ ability in environmental awareness, acquirements of their own state and “ubiquitous” computing power. Since 2013, wearable devices have quickly appeared around us. In this article we classify most of the wearable devices which have been appeared in the markets or reported in the literature according to their functions and the positions where they are worn. Furthermore, we review the technologies related to wearable devices, such as sensing technology, wireless communication, power manager, display technology and big data. At last, we analyze the challenges which the wearable devices will face in near future, and look forward to development trends of wearable devices.
Cardiovascular disease has caused a huge burden of disease worldwide, and the rapid advancement of smart wearable devices has provided new means for early diagnosis, real-time monitoring, and event prevention of cardiovascular disease. Smart wearable devices can be classified into various categories based on detection signals and physical carrier types. Based on an overview of the composition of such devices, this article further introduces the current cutting-edge research and related market products related to smart blood pressure monitoring, electrocardiogram monitoring, and ultrasound monitoring. It also discusses the future development and challenges of such devices, aiming to provide evidence support for the research and development of smart wearable devices in the diagnosis and treatment of cardiovascular diseases in the future.
Breathing pattern parameters refer to the characteristic pattern parameters of respiratory movements, including the breathing amplitude and cycle, chest and abdomen contribution, coordination, etc. It is of great importance to analyze the breathing pattern parameters quantificationally when exploring the pathophysiological variations of breathing and providing instructions on pulmonary rehabilitation training. Our study provided detailed method to quantify breathing pattern parameters including respiratory rate, inspiratory time, expiratory time, inspiratory time proportion, tidal volume, chest respiratory contribution ratio, thoracoabdominal phase difference and peak inspiratory flow. We also brought in “respiratory signal quality index” to deal with the quality evaluation and quantification analysis of long-term thoracic-abdominal respiratory movement signal recorded, and proposed the way of analyzing the variance of breathing pattern parameters. On this basis, we collected chest and abdomen respiratory movement signals in 23 chronic obstructive pulmonary disease (COPD) patients and 22 normal pulmonary function subjects under spontaneous state in a 15 minute-interval using portable cardio-pulmonary monitoring system. We then quantified subjects’ breathing pattern parameters and variability. The results showed great difference between the COPD patients and the controls in terms of respiratory rate, inspiratory time, expiratory time, thoracoabdominal phase difference and peak inspiratory flow. COPD patients also showed greater variance of breathing pattern parameters than the controls, and unsynchronized thoracic-abdominal movements were even observed among several patients. Therefore, the quantification and analyzing method of breathing pattern parameters based on the portable cardiopulmonary parameters monitoring system might assist the diagnosis and assessment of respiratory system diseases and hopefully provide new parameters and indexes for monitoring the physical status of patients with cardiopulmonary disease.
With the rapid advancement of artificial intelligence (AI), its application in the rehabilitation of patients undergoing hip and knee arthroplasty has been increasingly emphasized. AI has the potential to enhance the precision and individualization of rehabilitation training, improve patient adherence, and optimize overall outcomes. This review summarizes the current progress of AI in postoperative rehabilitation following hip and knee arthroplasty, focusing on its roles in rehabilitation assessment, intelligent training, and remote rehabilitation. Furthermore, the advantages of AI in improving efficiency, accuracy, and patient engagement are highlighted, while existing challenges, including insufficient clinical evidence, high technological costs, and ethical concerns, are critically discussed. Finally, potential future directions, such as the integration of AI with virtual reality and wearable devices, are proposed. This review aims to provide valuable insights for clinical practice and future research in the rehabilitation of hip and knee arthroplasty.
In order to address the problem of traditional dolphin adjuvant therapy such as high cost and its limitation in time and place, this paper introduces a three-dimensional virtual dolphin adjuvant therapy system based on virtual reality technology. By adopting Oculus wearable three-dimensional display, the system combined natural human-computer interaction based on Leap Motion with high-precision gesture recognition and cognitive training, and achieved immersive three-dimensional interactive game for child rehabilitation training purposes. The experimental data showed that the system can effectively improve the cognitive and social abilities of those children with autism spectrum disorder, providing a useful exploration for the rehabilitation of those children.
This paper aims to study the accuracy of cardiopulmonary physiological parameters measurement under different exercise intensity in the accompanying (wearable) physiological parameter monitoring system. SensEcho, an accompanying physiological parameter monitoring system, and CORTEX METALYZER 3B, a cardiopulmonary function testing system, were used to simultaneously collect the cardiopulmonary physiological parameters of 28 healthy volunteers (17 males and 11 females) in various exercise states, such as standing, lying down and Bruce treadmill exercise. Bland-Altman analysis, correlation analysis and other methods, from the perspective of group and individual, were used to contrast and analyze the two types of equipment to measure parameters of heart rate and breathing rate. The results of group analysis showed that the heart rate and respiratory rate data box charts collected by the two devices were highly consistent. The heart rate difference was (−0.407 ± 3.380) times/min, and the respiratory rate difference was (−0.560 ± 7.047) times/min. The difference was very small. The Bland-Altman plot of the heart rate and respiratory rate in each experimental stage showed that the proportion of mean ± 2SD was 96.86% and 95.29%, respectively. The results of individual analysis showed that the correlation coefficients of the whole-process heart rate and respiratory rate data were all greater than 0.9. In conclusion, SensEcho, as an accompanying physiological parameter monitoring system, can accurately measure the human heart rate, respiration rate and other key cardiopulmonary physiological parameters under various sports conditions. It can maintain good stability under various sports conditions and meet the requirements of continuous physiological signal collection and analysis application under sports conditions.
As a low-load physiological monitoring technology, wearable devices can provide new methods for monitoring, evaluating and managing chronic diseases, which is a direction for the future development of monitoring technology. However, as a new type of monitoring technology, its clinical application mode and value are still unclear and need to be further explored. In this study, a central monitoring system based on wearable devices was built in the general ward (non-ICU ward) of PLA General Hospital, the value points of clinical application of wearable physiological monitoring technology were analyzed, and the system was combined with the treatment process and applied to clinical monitoring. The system is able to effectively collect data such as electrocardiogram, respiration, blood oxygen, pulse rate, and body position/movement to achieve real-time monitoring, prediction and early warning, and condition assessment. And since its operation from March 2018, 1 268 people (657 patients) have undergone wearable continuous physiological monitoring until January 2020, with data from a total of 1 198 people (632 cases) screened for signals through signal quality algorithms and manual interpretation were available for analysis, accounting for 94.48 % (96.19%) of the total. Through continuous physiological data analysis and manual correction, sleep apnea event, nocturnal hypoxemia, tachycardia, and ventricular premature beats were detected in 232 (36.65%), 58 (9.16%), 30 (4.74%), and 42 (6.64%) of the total patients, while the number of these abnormal events recorded in the archives was 4 (0.63%), 0 (0.00%), 24 (3.80%), and 15 (2.37%) cases. The statistical analysis of sleep apnea event outcomes revealed that patients with chronic diseases were more likely to have sleep apnea events than healthy individuals, and the incidence was higher in men (62.93%) than in women (37.07%). The results indicate that wearable physiological monitoring technology can provide a new monitoring mode for inpatients, capturing more abnormal events and provide richer information for clinical diagnosis and treatment through continuous physiological parameter analysis, and can be effectively integrated into existing medical processes. We will continue to explore the applicability of this new monitoring mode in different clinical scenarios to further enrich the clinical application of wearable technology and provide richer tools and methods for the monitoring, evaluation and management of chronic diseases.
Wearable devices, as an important component of digital health, are gradually penetrating into the clinical nursing field. This paper explores the current applications of wearable devices in the field of clinical nursing, with a focus on their significant roles in real-time monitoring of physiological parameters, disease management, functional rehabilitation exercises. Additionally, it analyzes the challenges these devices face, such as the need for standardized development, data security and privacy protection, and cost-benefit analysis. This paper also proposes measures to address these challenges, including enhancing policy formulation, promoting standardization, and fostering technological innovation, with the aim of providing valuable insights for the advancement of high-quality clinical nursing practices.
As a novel technology, wearable physiological parameter monitoring technology represents the future of monitoring technology. However, there are still many problems in the application of this kind of technology. In this paper, a pilot study was conducted to evaluate the quality of electrocardiogram (ECG) signals of the wearable physiological monitoring system (SensEcho-5B). Firstly, an evaluation algorithm of ECG signal quality was developed based on template matching method, which was used for automatic and quantitative evaluation of ECG signals. The algorithm performance was tested on a randomly selected 100 h dataset of ECG signals from 100 subjects (15 healthy subjects and 85 patients with cardiovascular diseases). On this basis, 24-hour ECG data of 30 subjects (7 healthy subjects and 23 patients with cardiovascular diseases) were collected synchronously by SensEcho-5B and ECG Holter. The evaluation algorithm was used to evaluate the quality of ECG signals recorded synchronously by the two systems. Algorithm validation results: sensitivity was 100%, specificity was 99.51%, and accuracy was 99.99%. Results of controlled test of 30 subjects: the median (Q1, Q3) of ECG signal detected by SensEcho-5B with poor signal quality time was 8.93 (0.84, 32.53) minutes, and the median (Q1, Q3) of ECG signal detected by Holter with poor signal quality time was 14.75 (4.39, 35.98) minutes (Rank sum test, P=0.133). The results show that the ECG signal quality algorithm proposed in this paper can effectively evaluate the ECG signal quality of the wearable physiological monitoring system. Compared with signal measured by Holter, the ECG signal measured by SensEcho-5B has the same ECG signal quality. Follow-up studies will further collect physiological data of large samples in real clinical environment, analyze and evaluate the quality of ECG signals, so as to continuously optimize the performance of the monitoring system.