west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "transduction" 29 results
  • Advances in cell nuclear mechanobiology and its regulation mechanisms

    As an important intracellular genetic and regulatory center, the nucleus is not only a terminal effector of intracellular biochemical signals, but also has a significant impact on cell function and phenotype through direct or indirect regulation of nuclear mechanistic cues after the cell senses and responds to mechanical stimuli. The nucleus relies on chromatin-nuclear membrane-cytoskeleton infrastructure to couple signal transduction, and responds to these mechanical stimuli in the intracellular and extracellular physical microenvironments. Changes in the morphological structure of the nucleus are the most intuitive manifestation of this mechanical response cascades and are the basis for the direct response of the nucleus to mechanical stimuli. Based on such relationships of the nucleus with cell behavior and phenotype, abnormal nuclear morphological changes are widely used in clinical practice as disease diagnostic tools. This review article highlights the latest advances in how nuclear morphology responds and adapts to mechanical stimuli. Additionally, this article will shed light on the factors that mechanically regulate nuclear morphology as well as the tumor physio-pathological processes involved in nuclear morphology and the underlying mechanobiological mechanisms. It provides new insights into the mechanisms that nuclear mechanics regulates disease development and its use as a potential target for diagnosis and treatment.

    Release date: Export PDF Favorites Scan
  • Expressions and Significance of Hedgehog Ssignaling Pathway Protein of Ptch1 and Gli1 in Cholangiocarcinoma

    ObjectiveTo investigate the expressions of Patched-1 (Ptch1) and glioma-associated oncogene homologl (Gli1) protein of sonic hedgehog signaling pathway in cholangiocarcinoma tissues, and explore their correlations to the occurrence and development of cholangiocarcinoma. MethodsThe expressions of Ptch1 and Gli1 protein in 62 specimens of cholangiocarcinoma and its bile duct tissues adjacent to cancer were detected by immunohistochemistry, and their positive rate correlated with patients, age, tumor size, differentiation grade, tumor location, lymph node metastasis, TNM stage, operation mode, and postoperative survival time were investigated by statistical analysis. ResultsThe positive rates of Ptch1 and Gli1 protein were significantly higher in cholangiocarcinoma than in tissues adjacent to cancer (74.2% vs. 14.5%, 88.7% vs. 9.7%, P < 0.05). The expressions of Ptch1 and Gli1 protein in cholangiocarcinoma had no correlation to patients age, tumor size, and tumor location (P > 0.05), but were correlated to the operation mode, differentiation grade, lymph node metastasis, TNM stage, and postoperative survival time of patients (P < 0.05). ConclusionsThe elevated expressions of Ptch1 and Gli1 protein of Hh signaling pathway participated in the occurrence and development of cholangiocarcinoma. They may be ideal targets for therapy against cholangiocarcinoma.

    Release date: Export PDF Favorites Scan
  • Cells respond to mechanical stress and corresponding mechanisms of signal transduction

    Mechanical stress modulates almost all functions of cells. The key to exploring its biological effects lies in studying the perception of mechanical stress and its mechanism of mechanotransduction. This article details the perception and mechanotransduction mechanism of mechanical stress by extracellular matrix, cell membrane, cytoskeleton and nucleus. There are two main pathways for the perception and mechanotransduction of mechanical stress by cells, one is the direct transmission of force, and the other is the conversion of mechanical signal into chemical signal. The purpose of this study is to provide some reference for the exploration of precise treatment of mechanical stress-related diseases and the optimization of construction of tissue engineered organs by mechanical stress.

    Release date:2022-04-25 03:47 Export PDF Favorites Scan
  • THE ROLE OF Smads AND RELATED TRANSCRIPTION FACTORS IN THE SIGNAL TRANSDUCTION OF BONE MORPHOGENETIC PROTEIN INDUCING BONE FORMATION

    OBJECTIVE: To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. METHOD: We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. RESULTS: The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. CONCLUSION: Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone formation.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • Role of Piezo mechanosensitive ion channels in the osteoarticular system

    Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.

    Release date:2024-02-20 04:11 Export PDF Favorites Scan
  • Research progress of cyclic guanosine monophosphate in inherited retinal degeneration

    Inherited retinal degeneration (IRD) is a group of fundus diseases characterized by a high degree of genetic heterogeneity and clinical heterogeneity, and more than 300 genetic mutations have been identified in association with IRD. Dysregulation of the intracellular second messenger cyclic guanosine monophosphate (cGMP) plays an important role in the development of IRD. cGMP participates in phototransduction process in photoreceptors. Abnormally elevated cGMP over-activate protein kinase G and cyclic nucleotide-gated channel, causing protein phosphorylation and Ca2+ overload, respectively, and these two cGMP-dependent pathways may individually or collectively drive photoreceptor degenerative lesions and death; therefore, reducing cGMP synthesis and blocking downstream signaling can be considered as treatment strategies. Investigating the molecular mechanisms of cGMP dysregulation in photoreceptor degeneration may provide a more comprehensive picture of the pathogenesis of IRD, as well as ideas for finding new therapeutic targets and designing therapeutic programs.

    Release date:2024-11-20 10:40 Export PDF Favorites Scan
  • OVEREXPRESSION OF TRUNCATED TYPE Ⅱ TRANSFORMING GROWTH FACTOR-β RECEPTOR IN DERMAL FIBROBLASTS

    OBJECTIVE: To study the effect of overexpression of truncated type II TGF-beta receptor on transforming growth factor-beta 1(TGF-beta 1) autoproduction in normal dermal fibroblasts. METHODS: In vitro cultured dermal fibroblasts were treated with recombinant human TGF-beta 1(rhTGF-beta 1) (5 ng/ml) or recombinant adenovirus containing truncated type II TGF-beta receptor gene (50 pfu/cell). Their effects on regulating gene expression of TGF-beta 1 were observed with Northern blotting. RESULTS: rhTGF-beta 1 up-regulated the gene expression of TGF-beta 1 and type I procollagen. Overexpression of truncated receptor II down-regulated the gene expression of TGF-beta 1. CONCLUSION: Overexpression of the truncated TGF-beta receptor II decreases TGF-beta 1 autoproduction via blocking TGF-beta receptor signal. The results may provided a new strategy for scar gene therapy.

    Release date:2016-09-01 10:15 Export PDF Favorites Scan
  • DEVELOPMENT OF HAIR FOLLICLE STEM CELLS RELATED SIGNAL TRANSDUCTION IN PROLIFERATION AND DIFFERENTIATION

    Objective  To introduce the basic research and cl inical potential of the hair foll icle stem cells related signal transduction in prol iferation and differentiation. Methods The recent original articles about the hair foll icle stem cells were extensively reviewed. Results Many different signal pathways had been involved in the skin development and self-newals.The hair foll icle stem cells could play an important role in the skin self-renewal and regeneration which were modulated by several different signal pathways, which included bone morphogenetic protein/transforming growth factor β, Wnt, Notch and ectodysplasin A genes.  Conclusion The hair foll icle stem cells may be a future approach to repair cutaneous wounds as a cell therapy.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • ROLES OF LEPTINMEDIATED INTRACELLULAR SIGNALING PATHWAYS ON WOUND HEALING

    Objective To study the leptin-mediated intracellular signal pathways and their effects on wound healing.Methods The literature was reviewed extensively, concerning the physical and chemical characters of leptin, the mechanism of its receptor action, the receptor-related intracellular signal pathways and their roles on wound healing. Results Leptin was a protein hormone expressed by ob gene with relative molecular mass 16×103, it could activate the main singal pathways such as Janus kinase/signal transducer and activator of transcription, mitogenactivated protein kinases and phosphoinositide-3-kinase pathways through binding with its specific receptor, to participate in the modulation of multiple functions including energy metabolism, weight balance and wound healing. Leptin receptors were widely distributed in various tissues, which suggest the multiple functions of leptin. Local leptin expression was increased after skin injured, and it could stimulate keratinocytes proliferation, epithelialization, fibroblast proliferation and collagen synthesis, resulting in accelarated wound repair. Leptin expression was significantly increased after mucosal injury or bacteria infections, leading to accelarated mucosal repair through modulation of mucosal glandular secretion, improvment of mucosal blood flow, and synergistic action with endothelin-1.Conclusion Leptin can promote wound healing through activating its receptor-related intracellular signal pathways.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF NEURAL STEM CELLS SIGNAL TRANSDUCTION PATHWAY

    To summarize Notch, basic hel ix-loop-hel ix (bHLH) and Wnt gene signal transduction pathways in the process of differentiation and development of neural stem cells. Methods The l iterature on the gene signal transduction pathway in the process of differentiation and development of neural stem cells was searched and then summarized and analyzed. Results The formation of Nervous System resulted from common actions of multi-signal transduction pathways. There may exist a fixed threshold in the compl icated selective system among Notch, bHLH and Wnt gene signal transduction pathways. Conclusion At present, the specific gene signal transduction pathway of multi pl ication and differentiation of neural stem cells is still unclear.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content