west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "strain" 31 results
  • Effects of Geometrical Dimensions and Material Properties on the Rotation Characteristics of Head

    The validated finite element head model (FEHM) of a 3-year-old child, a 6-year-old child and a 50th percentile adult were used to investigate the effects of head dimension and material parameters of brain tissues on the head rotational responses based on experimental design. Results showed that the effects of head dimension and directions of rotation on the head rotational responses were not significant under the same rotational loading condition, and the same results appeared in the viscoelastic material parameters of brain tissues. However, the head rotational responses were most sensitive to the shear modulus (G) of brain tissues relative to decay constant (β) and bulk modulus (K). Therefore, the selection of material parameters of brain tissues is most important to the accuracy of simulation results, especially in the study of brain injury criterion under the rotational loading conditions.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Research progress on the application of novel sensing technologies for sleep-related breathing disorder monitoring at home

    Sleep-related breathing disorder (SRBD) is a sleep disease with high incidence and many complications. However, patients are often unaware of their sickness. Therefore, SRBD harms health seriously. At present, home SRBD monitoring equipment is a popular research topic to help people get aware of their health conditions. This article fully compares recent state-of-art research results about home SRBD monitors to clarify the advantages and limitations of various sensing techniques. Furthermore, the direction of future research and commercialization is pointed out. According to the system design, novel home SRBD monitors can be divided into two types: wearable and unconstrained. The two types of monitors have their own advantages and disadvantages. The wearable devices are simple and portable, but they are not comfortable and durable enough. Meanwhile, the unconstrained devices are more unobtrusive and comfortable, but the supporting algorithms are complex to develop. At present, researches are mainly focused on system design and performance evaluation, while high performance algorithm and large-scale clinical trial need further research. This article can help researchers understand state-of-art research progresses on SRBD monitoring quickly and comprehensively and inspire their research and innovation ideas. Additionally, this article also summarizes the existing commercial sleep respiratory monitors, so as to promote the commercialization of novel home SRBD monitors that are still under research.

    Release date:2022-10-25 01:09 Export PDF Favorites Scan
  • Fiber direction estimation using constrained spherical deconvolution based on multi-model response function

    Constrained spherical deconvolution can quantify white matter fiber orientation distribution information from diffusion magnetic resonance imaging data. But this method is only applicable to single shell diffusion magnetic resonance imaging data and will provide wrong fiber orientation information in white matter tissue which contains isotropic diffusion signals. To solve these problems, this paper proposes a constrained spherical deconvolution method based on multi-model response function. Multi-shell data can improve the stability of fiber orientation, and multi-model response function can attenuate isotropic diffusion signals in white matter, providing more accurate fiber orientation information. Synthetic data and real brain data from public database were used to verify the effectiveness of this algorithm. The results demonstrate that the proposed algorithm can attenuate isotropic diffusion signals in white matter and overcome the influence of partial volume effect on fiber direction estimation, thus estimate fiber direction more accurately. The reconstructed fiber direction distribution is stable, the false peaks are less, and the recognition ability of cross fiber is stronger, which lays a foundation for the further research of fiber bundle tracking technology.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • A gradient-based direct aperture optimization

    Aiming at the disadvantages of traditional direct aperture optimization (DAO) method, such as slow convergence rate, prone to stagnation and weak global searching ability, a gradient-based direct aperture optimization (GDAO) is proposed. In this work, two different optimization methods are used to optimize the shapes and the weights of the apertures. Firstly, in order to improve the validity of the aperture shapes optimization of each search, the traditional simulated annealing (SA) algorithm is improved, the gradient is introduced to the algorithm. The shapes of the apertures are optimized by the gradient based SA method. At the same time, the constraints between the leaves of multileaf collimator (MLC) have been fully considered, the optimized aperture shapes are meeting the requirements of clinical radiation therapy. After that, the weights of the apertures are optimized by the limited-memory BFGS for bound-constrained (L-BFGS-B) algorithm, which is simple in calculation, fast in convergence rate, and suitable for solving large scale constrained optimization. Compared with the traditional SA algorithm, the time cost of this program decreased by 15.90%; the minimum dose for the planning target volume was improved by 0.29%, the highest dose for the planning target volume was reduced by 0.45%; the highest dose for the bladder and rectum, which are the organs at risk, decreased by 0.25% and 0.09%, respectively. The results of experiment show that the new algorithm can produce highly efficient treatment planning a short time and can be used in clinical practice.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
  • Effect of Biaxial Tensile Strain on Expression of Osteogenic Specificity Markers of Rat Bone Marrow-derived Mesenchymal Stem Cells in Vitro

    The purpose of this study was to investigate the effect of biaxial tensile strain on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The rBMSCs were isolated from tibia and femur of 4 weeks-old Sprague-Dawley (SD) rats. The rBMSCs were cultured in DMEM-LG complete culture medium and grew to subconfluence in the cell culture device for loading tensile strain. The biaxial tensile strain was applied to the rBMSCs for periods of 2, 4 and 6 hours every day, respectively, lasting 3 days. The amplitude of biaxial tensile strain applied to the rBMSCs were 1%, 2% and 5% respectively, at a frequency of 1 Hz. Unstrained rBMSCs were used as blank control (control group). The rBMSCs cultured with DMEM-LG complete culture medium containing 100 nmol/L β-Estradiol (E2) were used as positive control. The mRNA expression of alkaline phosphatase (ALP), collagen typeⅠ (ColⅠ), Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) was examined with real-time quantitative PCR and the protein expression of ALP, ColⅠ, Runx2 and OCN was detected with Western blot method. The results showed as follws: (1) The mRNA and protein expression of the ALP, ColⅠ, Runx2, OCN were significantly higher in rBMSCs of the E2 group than those in the control group (P<0.05). (2) The mRNA and protein expression level of the ALP, Runx2 were higher markedly in the 1% tensile strain groups than those in the control group (P<0.05), but lower than those in the E2 group (P<0.05). (3) The mRNA and protein expression level of the ALP, ColⅠ, Runx2, OCN were significantly higher in the 2% tensile strain groups than those in the control group (P<0.05), and the mRNA and protein expression level of ColⅠ and Runx2 in the group applied with 2% amplitude of tensile strain for 4 h/d was significantly higher than those in E2 group (P<0.05). (4) The mRNA and protein expression level of the ALP, ColⅠ, Runx2 were significantly higher in the groups applied with 5% amplitude of tensile strain for 2 h/d or for 4 h/d than those in the control group (P<0.05). In our study, E2 and mechanical stimulation played an important role in the regulation of differentiation of rBMSCs into osteoblasts, and the manner applied with the 2% amplitude of tensile strain for 4 h/d, lasting 3 days was an optimal stimulus for up-regulating the mRNA and protein expression of ALP, ColⅠ, Runx2, OCN of rBMSCs.

    Release date:2017-01-17 06:17 Export PDF Favorites Scan
  • Influence analysis of aging of spinal segment on the mechanical behavior of vertebral cortex

    The risk of vertebral cortical shell fracture increases with aging. However, it remains unclear how aging contributes to cortex fracture at present. The aim of this study is to make understanding of the mechanism of how the spinal aging influences the cortical shell strain. Two finite element (FE) models of spinal segments (mildly and fully aged) were created, and then were compared to the FE models of the healthy spinal segment. The FE models of the aged spinal segments were generated by modifying both the geometry of the intervertebral disc (IVD) and the material properties of the spinal components. To find out under which case the cortical shell strain was influenced more, we created two types of FE model comparison methods: one with changes only in the spinal material properties and the other with changes only in the IVD geometry. The results showed that the cortical shell strains increased with aging and that compared to the changes of IVD geometry, the changes of spinal material property have a higher influence on the cortical shell strains. This study may suggest that for the prevention and treatment of vertebral cortex fracture, the augmentation of the vertebral body is a more effective treatment.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • BIOMECHANICAL EFFECT OF MUSHROOM SHAPED SURFACE PROSTHESIS ON FEMORAL NECK AFTER REPLACEMENT

    Objective To investigate whether the biomechanical effect of mushroom shaped surface prosthesis on femoral neck is in the scope of safety after the replacement. Methods Four donated fresh-adult specimens of upper femur under the age of 55 years old were used. The strains of detecting points A (lateral) and B (medial) on the narrow place of femoral neck in the standing position were simulated for three stages before or after the prosthesis replacement, namely the pre-replacement, the initial stage during which the interspace of the prosthesis was filled with cancellous bone, and laterstage during which the interspace of the prosthesis was filled with bone cement. Then they were compared by using l inear regression analysis in Excel and rel iabil ity analysis. Results The regression analysis showed that the values of correlation coefficient r were all more than 99% at the different stages, indicating the strain of femoral neck’s cortical bone was proportional to the load and there was no occurrence of the plastic deformation of the femoral neck. For point A, the slope of the trend l ine of strain was 0.671 9 at the pre-replacement stage. The value of the initial stage after replacement was 0.619 2 and its change rate was —7.8%; while corresponding value was 0.662 7 and —1.4% at the later stage after replacement. For point B, the slope of the trend l ine of strain was —1.056 1 at the pre-replacement stage. The value of the initial stage after replacement was — 1.129 2 and its change rate was 6.9%; while corresponding value was —1.085 1 and 2.7% at the later stage after replacement. Conclusion The mechanical strength of femoral neck is in the scope of safety after surface replacement of the femoral head. The change rate of strain at the later stage is smaller than the initial stage.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • Intravascular Ultrasound-based Computational Fluid Dynamics Simulation of Arterial Vessel Wall Strain Distribution

    Quantitative measurement of strain distribution of arterial vessel walls due to pulsatile blood flow within the vascular lumen is valuable for evaluating the elasticity of arterial wall and predicting the evolution of plaques. The present paper shows that the three-dimensional (3D) strain distribution are estimated through uni-directional coupling for 3D vessel and blood models reconstructed from intravascular ultrasound (IVUS) images with the computational fluid dynamics (CFD) numerical simulation technique. The morphology of vessel wall and plaques as well as strain distribution can be visually displayed with pseudo-color coding.

    Release date: Export PDF Favorites Scan
  • An optical coherent imaging system for measuring the strain of blood vessels

    We aimed to establish an optical coherence tomography (OCT) system to measure the strain of blood vessels. A general OCT system was constructed firstly and its reliability was confirmed by comparing the OCT imaging of the porcine coronary and the corresponding histological slices. The strain of the porcine coronary was induced by static flow pressure and correlation algorithm was used to calculate the strain field of blood vessels within OCT images. The results suggest that bright-dark stratification of blood vessels displayed in OCT images is consistent with the intima and media layers of histological image. Furthermore, the strain of media layer is greater than that of the intima layer under the same static pressure. The optical coherence imaging system could not only measure the histological structure of the blood vessels, but also qualify the vessel strain under flow pressure.

    Release date:2017-10-23 02:15 Export PDF Favorites Scan
  • A method of lung puncture path planning based on multi-level constraint

    Percutaneous pulmonary puncture guided by computed tomography (CT) is one of the most effective tools for obtaining lung tissue and diagnosing lung cancer. Path planning is an important procedure to avoid puncture complications and reduce patient pain and puncture mortality. In this work, a path planning method for lung puncture is proposed based on multi-level constraints. A digital model of the chest is firstly established using patient's CT image. A Fibonacci lattice sampling is secondly conducted on an ideal sphere centered on the tumor lesion in order to obtain a set of candidate paths. Finally, by considering clinical puncture guidelines, an optimal path can be obtained by a proposed multi-level constraint strategy, which is combined with oriented bounding box tree (OBBTree) algorithm and Pareto optimization algorithm. Results of simulation experiments demonstrated the effectiveness of the proposed method, which has good performance for avoiding physical and physiological barriers. Hence, the method could be used as an aid for physicians to select the puncture path.

    Release date:2022-08-22 03:12 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content