This article investigates the role of AMP-activated protein kinase (AMPK) and its downstream signaling targets in mediating cellular processes such as autophagy, apoptosis, and inflammation, offering insights into how acupuncture may treat common central nervous system (CNS) diseases, including ischemic stroke, spinal cord injury, Parkinson disease, and Alzheimer disease. AMPK and its downstream effectors are pivotal in the signaling pathways that underlie the pathophysiology of CNS diseases. These pathways are implicated in a variety of cellular responses that contribute to the progression of neurological disorders. During CNS injury, AMPK can be activated through phosphorylation, triggering the regulation of downstream molecules and exerting protective effects on neuronal function. Acupuncture has been shown to promote neuroprotection and enhance recovery in CNS diseases through multiple mechanisms, one of which involves the activation of AMPK-related signaling pathways. Nevertheless, numerous unresolved challenges remain in this research field.
Objective To discuss the clinical characteristics, mechanism, and treatment of odontoid fracture combined with lower cervical spinal cord injuries without fracture or dislocation. Methods According to the inclusion and exclusion criteria, 7 male patients aged 37-71 years (mean, 51.4 years), suffered from odontoid fractures combined with lower cervical spinal cord injuries without fracture or dislocation were analyzed retrospectively between June 2007 and October 2015. The trauma causes were traffic accidents in 2 cases, fall in 2 cases, and hit injury in 3 cases. The time from injury to admission was 2 hours to 3 days with an average of 9 hours. According to Anderson-Grauer classification of odontoid fracture, 1 case of type IIA, 3 cases of type IIB, 2 cases of type IIC, and 1 case of shallow type III were found. The cervical spinal cord injuries affected segments included C4, 5 in 1 case, C4–6 in 2 cases, and C5–7 in 4 cases. All the cervical spine had different degenerative changes: 2 of mild, 3 of moderate, and 2 of severe. The lower cervical spinal cord injury was assessed by Sub-axial Injury Classification (SLIC) with scoring of 4-6 (mean, 5.1). The visual analogue scale (VAS) score was used to evaluate the occipital neck pain with scoring of 7.8±1.0; the neurological function was assessed by American Spinal Injury Association (ASIA) as grade B in 1 case, grade C in 4 cases, and grade D in 2 cases; and Japanese Orthopedic Association score (JOA) was 9.2±3.9. For the odontoid fractures, 4 cases were fixed with anterior screw while the others were fixed with posterior atlantoaxial fixation and fusion. For the lower cervical spine, 4 cases were carried out with anterior cervical corpectomy and titanium fusion while the others with anterior cervical disecotomy and Cage fusion. Results The operation time was 178-252 minutes (mean, 210.2 minutes); the intraoperative blood loss was 60-140 mL (mean, 96.5 mL) and with no blood transfusion. All incisions healed primarily. All the patients were followed up 12-66 months (mean, 18 months). There was no direct surgical related complications during operation, and all bone grafting got a fusion at 6-9 months (mean, 7.7 months) after operation. There was no inter-fixation failure or loosening. At last follow-up, the VAS score declined to 1.7±0.7 and JOA score improved to 15.1±1.7, showing significant differences when compared with preoperative ones (t=18.064, P=0.000; t=–7.066, P=0.000). The neurological function of ASIA grade were also improved to grade D in 5 cases and grade E in 2 cases, showing significant difference (Z=–2.530, P=0.011). Conclusion Complex forces and degeneration of lower cervical spine were main reasons of odontoid fracture combined with lower cervical spinal cord injuries without fracture or dislocation. The type of odontoid fracture and neurological deficit status of lower cervical spinal cord were important to guide making strategy of one-stage operation with a satisfactory clinic outcome.
ObjectiveTo investigate the expression changes and the repair effect of mitogen and stress- activated protein kinase 1 (MSK1) on spinal cord injury (SCI) in rats.MethodsOne hundred and twenty male Sprague Dawley (SD) rats (weighing 220-250 g) were used for the study, 70 of them were randomly divided into sham-operation group and SCI group (n=35), the rats in SCI group were given SCI according to Allen’s method, and the sham-operation group only opened the lamina without injuring the spinal cord; spinal cord tissue was collected at 8 hours, 12 hours, 1 day, 2 days, 3 days, 5 days, and 7 days after invasive treatment, each group of 5 rats was used to detect the expression of MSK1 and proliferating cell nuclear antigen (PCNA) by Western blot assay. Another 20 SD rats were grouped by the same method as above (n=10). In these rats, a negative control lentiviral LV3NC dilution was injected at a depth of approximately 0.8 mm at the spinal cord T10 level. The results of transfection at 1, 3, 5, 7, and 14 days after injection were observed under an inverted fluorescence microscope to determine the optimal transfection time of the virus. The other 30 SD rats were randomly divided into group A with only SCI, group B with a negative control lentiviral LV3NC injected after SCI, and group C with MSK1 small interfering RNA (siRNA) lentivirus injected after SCI, with 10 rats each group. The Basso, Beatlie, Bresnahan (BBB) score of hind limbs was measured at 1, 3, 5, 7, and 14 days after treatment; spinal cord tissue collected at the optimal time point for lentivirus transfection was detected the expression changes of MSK1 and PCNA by Western blot and the localization by immunofluorescence staining of MSK1 and PCNA proteins.ResultsWestern blot assay showed that there was no significant changes in the expression of MSK1 and PCNA at each time points in the sham-operation group. In the SCI group, the expression of MSK1 protein was gradually decreased from 8 hours after injury to the lowest level at 3 days after injury, and then gradually increased; the expression change of PCNA protein was opposite to MSK1. The expression of MSK1 in SCI group was significantly lower than that in the sham-operation group at 1, 2, 3, and 5 days after injury (P<0.05), and the expression of PCNA protein of SCI group was significantly higher than that of the sham-operation group at 8 hours and 1, 2, 3, 5, and 7 days after injury (P<0.05). The fluorescence expression of both the SCI group and the sham-operation group has be found and peaked at 7 days. There was a positive correlation between fluorescence intensity and time in 7 days after transfection. With the prolongation of postoperative time, the BBB scores of groups A, B, and C showed a gradually increasing trend. The BBB score of group C was significantly lower than those of groups A and B at 5, 7, and 14 days after treatment (P<0.05). After transfection for 7 days, Western blot results showed that the relative expression of MSK1 protein in group C was significantly lower than that in groups A and B (P<0.05); and the relative expression of PCNA protein was significantly higher than that in groups A and B (P<0.05). Immunofluorescence staining showed that MSK1 was expressed in the nuclei of the spinal cord and colocalized with green fluorescent protein, neuronal nuclei, and glial fibrillary acidic protein (GFAP). The relative expression area of MSK1 positive cells in group C was significantly higher than that in group B (P<0.05), and the relative expression areas of PCNA and GFAP positive cells were significantly lower than those in group B (P<0.05).ConclusionLentivirus-mediated MSK1 siRNA can effectively silence the expression of MSK1 in rat spinal cord tissue. MSK1 may play a critical role in the repair of SCI in rats by regulating the proliferation of glial cells.
Objective To determine the feasibility, safety, and efficacy of common pedicle screw placement under direct vision combined with dome shaped decompression via small incision for double segment thoracolumbar fracture with nerve injury. Methods A retrospective analysis was performed on the clinical data of 32 patients with double segment thoracolumbar fracture with nerve injury undergoing common pedicle screw placement under direct vision combined with dome shaped decompression via small incision between November 2011 and November 2015 (combined surgery group), and another 32 patients undergoing traditional open pedicle screw fixation surgery (traditional surgery group). There was no significant difference in gender, age, cause of injury, time of injury-to-surgery, injury segments and Frankel classification of neurological function between two groups (P>0.05). The length of soft tissue dissection, the operative time, the blood loss during surgery, the postoperative drainage, the visual analogue scale (VAS) of incision after surgery, and recovery of neurological function after surgery were evaluated. Results All cases were followed up 9 to 12 months (mean, 10.5 months) in combined surgery group, and 8 to 12 months (mean, 9.8 months) in traditional surgery group. The length of soft tissue dissection, the operative time, the blood loss during surgery, the postoperative drainage, and the postoperative VAS score in the combined surgery group were significantly better than those in the traditional surgery group (P<0.05). Dural rupture during surgery and pedicle screw pulling-out at 6 months after surgery occurred in 2 cases and 1 case of the combined surgery group; dural rupture during surgery occurred in 1 case of the traditional surgery group. The X-ray films showed good decompression, and fracture healing; A certain degree of neurological function recovery was achieved in two groups. Conclusion Common pedicle screw placement under direct vision combined with dome shaped decompression via small incision can significantly reduce iatrogenic trauma and provide good nerve decompression. Therefore, it is a safe, effective, and minimally invasive treatment method for double segment thoracolumbar fracture with neurological injury.
ObjectiveTo assess whether expanding the landing zone of frozen elephant trunk (FET) increases the risk of spinal cord injury in patients with acute type A aortic dissection. MethodsPatients with acute type A aortic dissection who were treated in Guangdong Provincial People’s Hospital from 2017 to 2020 were collected. They were divided into two groups according to the landing zone of FET by the image diagnosis of postoperative chest X-ray or total aorta CT angiography, including a Th9 group which defined as below the eighth thoracic vertebral level, and a Th8 group which was defined as above or equal to the eighth thoracic vertebral level. Using the propensity score matching (PSM) method, the preoperative and intraoperative data of two groups were matched with a 1∶2 ratio. The prognosis of the two groups after PSM was analyzed. Results Before PSM, 573 patients were collected, including 58 patients in the Th9 group and 515 patients in the Th8 group. After PSM, 174 patients were collected, including 58 patients in the Th9 group (46 males and 12 females, with an average age of 47.91±9.92 years), and 116 patients in the Th8 group (93 males and 23 females, with an average age of 48.01±9.53 years). There were 8 patients of postoperative spinal cord injury in the two groups after PSM, including 5 (4.31%) patients in the Th8 group and 3 (5.17%) patients in the Th9 group (P=0.738). In the Th8 group, 2 patients had postoperative transient paresis and recovered spontaneously after symptomatic treatment, and 1 patient had postoperative paraplegia with cerebrospinal fluid drainage. After 3 days, the muscle strength of both lower limbs gradually recovered after treatment. There was no statistical difference in complications between the two groups (P>0.05). ConclusionExpanding the landing zone of FET does not increase the risk of spinal cord injury in patients with acute type A aortic dissection. However, the sample size is limited, and in the future, multicenter large-scale sample size studies are still needed for verification
Functional electronic stimulation (FES) may provide a means to restore motor function in patients with spinal cord injuries. The goal of this study is to determine the regions in the spinal cord controlling different hindlimb movements in the rats. Normalization was used for the regions dominating the corresponding movements. It has been verified that FES can be used in motor function recovery of the hindlimb. The spinal cord was stimulated by FES with a three-dimensional scan mode in experiments. The results show that stimulation through the electrodes implanted in the ventral locations of the lumbosacral enlargement can produce coordinated single- and multi-joint hindlimb movements. A variety of different hindlimb movements can be induced with the appropriate stimulation sites, and movement vectors of the hindlimb cover the full range of movement directions in the sagittal plane of the hindlimb. This article drew a map about spinal cord motor function of the rat. The regions in the spinal cord which control corresponding movements are normalized. The data in the study provide guidance about the location of electrode tips in the follow-up experiments.
Objective To evaluate the feasibility and safety of percutaneous endoscopic technique in the treatment of intraspinal cement leakage after percutaneous vertebroplasty (PVP). Methods Between May 2014 and March 2016, 5 patients with lower limb pain and spinal cord injury caused by intraspinal cement leakage after PVP, were treated with percutaneous endoscopic spinal decompression. Of 5 cases, 3 were male and 2 were female, aged from 65 to 83 years (mean, 74.4 years). The course of disease was 10-30 days (mean, 16.2 days). Imageological examinations confirmed the levels of cement leakage at T 12, L 1 in 3 cases, and at L 1, 2 in 2 cases; bilateral sides were involved in 1 case and unilateral side in 4 cases. Two patients had lower limb pain, whose visual analogue scale (VAS) were 8 and 7; 3 patients had lower extremities weakness, whose Japanese Orthopedic Association (JOA) 29 scores were 18, 20, and 19. According to American Spinal Injury Association (ASIA) impairment scale, neural function was rated as grade E in 2 cases and grade D in 3 cases. Results The operation time was 55-119 minutes (mean, 85.6 minutes), and the blood loss was 30-80 mL (mean, 48 mL). CT scan and three-dimensional (3D) reconstruction at 1 day after operation showed that cement leakage was removed in all patients. Five cases were followed up 6-21 months (mean, 12 months). In 2 patients with lower limb pain, and VAS score was significantly decreased to 2 at last follow-up. In 3 patients with lower extremities weakness, the muscle strength was improved progressively, and the JOA29 scores at last follow-up were 21, 23, and 22. Conclusion Percutaneous endoscopic technique for intraspinal cement leakage after PVP is safe, effective, and feasible.
Objective To investigate the effect of quantitative semi-transected blade on the improvement of spinal cord semi-transected and lump defect model. Methods Forty-eight male Sprague Dawley rats (weighing 220-250 g) were divided into the experimental group (n=24) and control group (n=24). The spinal cord semi-transected and lump defect model was made by self-made quantitative semi-transected blade in the experimental group, and by ophthalmic scalpel in the controlgroup. Then, the complications were observed; the electrophysiological results were detected before modeling and at 21 days after modeling; the histological changes at margin of lump defect were observed at 6 hours, 5 days, and 28 days; Basso, Beattie, and Bresnahan (BBB) scores were detected at 1, 3, 5, 7, 14, 21, 28, 35, 42, 56, and 84 days after modeling. Results There was significant difference in the mortality between the experimental group (0) and the control group (26.67%) (P=0.028). Electrophysiological examination: there was no significant difference in latency and ampl itude of motor evoked potentials (MEP) and sensory evoked potentials (SEP) between 2 groups at preoperation (P gt; 0.05); at 21 days after operation, latencies of MEP and SEP increased and the amplitude decreased in the control group, showing significant differences when compared with those in the experimental group and the preoperative values (P lt; 0.05), but no significant difference was seen between preoperation and postoperation in the experimental group (P gt; 0.05). Histological examination: in the control group, small hematoma could be observed at normal side at 6 hours after modeling, increased spaces of spinal tissue and perineural invasion were observed at 5 days, and small cavity formed without normal motoneurons at 28 days in the margin of lump defect. In the experimental group, no small hematoma could be observed at 6 hours after modeling, no inreversible injury of neuron and small cavity were observed at 5 days, and normal motoneurons were observed without small cavity at 28 days in the margin of lump defect.BBB scores: except the scores between experimental group and control group at affected side (P gt; 0.05), there were significant differences between groups, and between normal side and affected side for intragroup (P lt; 0.05). Conclusion Semi-transected and lump defect model could be set up successfully by self-made quantitate semi-transected blade, procedure is repetitive and the model is stable. This model is an ideal model for semi-transected spinal cord injury.
ObjectiveTo evaluate the effect of the combination of collagen scaffold and brain-derived neurotrophic factor (BDNF) on the repair of transected spinal cord injury in rats.MethodsThirty-two Sprague-Dawley rats were randomly divided into 4 groups: group A (sham operation group), T9, T10 segments of the spinal cord was only exposed; group B, 4-mm T9, T10 segments of the spinal cord were resected; group C, 4-mm T9, T10 segments of the spinal cord were resected and linear ordered collagen scaffolds (LOCS) with corresponding length was transplanted into lesion site; group D, 4-mm T9, T10 segments of the spinal cord were resected and LOCS with collagen binding domain (CBD)-BDNF was transplanted into lesion site. During 3 months after operation, Basso-Beattie-Bresnahan (BBB) locomotor score assessment was performed for each rat once a week. At 3 months after operation, electrophysiological test of motor evoked potential (MEP) was performed for rats in each group. Subsequently, retrograde tracing was performed for each rat by injection of fluorogold (FG) at the L2 spinal cord below the injury level. One week later, brains and spinal cord tissues of rats were collected. Morphological observation was performed to spinal cord tissues after dehydration. The thoracic spinal cords including lesion area were collected and sliced horizontally. Thoracic spinal cords 1 cm above lesion area and lumbar spinal cords 1 cm below lesion area were collected and sliced coronally. Coronal spinal cord tissue sections were observed by the laser confocal scanning microscope and calculated the integral absorbance (IA) value of FG-positive cells. Horizontal tissue sections of thoracic spinal cord underwent immunofluorescence staining to observe the building of transected spinal cord injury model, axonal regeneration in damaged area, and synapse formation of regenerated axons.ResultsDuring 3 months after operation, the BBB scores of groups B, C, and D were significantly lower than those of group A (P<0.05). The BBB scores of group D at 2-12 weeks after operation were significantly higher than those of groups B and C (P<0.05). Electrophysiological tests revealed that there was no MEP in group B; the latencies of MEP in groups C and D were significantly longer than that in group A (P<0.05), and in group C than in group D (P<0.05). Morphological observation of spinal cord tissues showed that the injured area of the spinal cord in group B extended to both two ends, and the lesion site was severely damaged. The morphologies of spinal cord tissues in groups C and D recovered well, and the morphology in group D was closer to normal tissue. Results of retrograde tracing showed that the gray matters of lumbar spinal cords below the lesion area in each group were filled with FG-positive cells; in thoracic spinal cords above lesion sites, theIA value of FG-positive cells in coronal section of spinal cord in group A was significantly larger than those in groups B, C, and D (P<0.05), and in groups C and D than in group B (P<0.05), but no significant difference was found between groups C and D (P>0.05). Immunofluorescence staining results of spinal cord tissue sections selected from dorsal to ventral spinal cord showed transected injured areas of spinal cords which were significantly different from normal tissues. The numbers of NF-positive axons in lesion center of group A were significantly larger than those of groups B, C, and D (P<0.05), and in groups C and D than in group B (P<0.05), and in group D than in group C (P<0.05).ConclusionThe combined therapeutic approach containing LOCS and CBD-BDNF can promote axonal regeneration and recovery of hind limb motor function after transected spinal cord injury in rats.
Objective To explore the related factors of upper urinary tract deterioration (UUTD) in spinal cord injury patients using intermittent catheterization (IC-SCI) in the community. Methods Patients with spinal cord injury in the Chinese community were selected for investigation between August 3 and August 31, 2020. The included patients were divided into UUTD group and non-UUTD group. The basic information, intermittent catheterization practices, and urinary complications were compared between the two groups. Logistic regression was used to analyze the risk factors contributing to UUTD. Results A total of 431 patients were surveyed. Among them, there were 310 males and 121 females, 246 cases in the non-UUTD group and 185 cases in the UUTD group. There were statistically significant differences in the disease duration, gender, etiology, urinary incontinence, urinary tract infection, bladder calculi and nephrolithiasis between the two groups (P<0.05); there was no statistically significant difference in the other indicators between the two groups (P>0.05). The results of logistic regression analysis showed that urinary tract infection [odds ratio (OR)=3.229, 95% confidence interval (CI) (1.706, 6.110), P<0.001], nephrolithiasis [OR=4.846, 95%CI (2.617, 8.973), P<0.001], and urinary incontinence [OR=2.345, 95%CI (1.116, 4.925), P=0.024] were risk factors for UUTD. Conclusion Urinary tract infection, nephrolithiasis and urinary incontinence are independent risk factors for UUTD in community-based IC-SCI patients and deserve attention for preventive strategies.