Objective To establish a model for studying on mechanical responses of osteoblasts seeded in 3 dimensional(3D) scaffold. Methods Fifty pieces of bioderived cancellous bones, whose holes were 500 to 800 μm and density was 0.36 to 0.45g/cm3, were obtained as the scaffolds. They were cultured with the third passage suspension of Wistar rat. Twenty-four of the 50 scaffolds were constructed under apparent strain sine waveform with amplitude of 1 000 με, frequency of 3 Hz, and duration of 3 min/d, as experimental group. The other scaffolds were control group. After 3day coculture, osteoblasts were observed with scanning electron microscope. The proliferation of the osteoblasts was checked by MTT on scheduled date. Results Scanning electron microscopic observation showed that osteoblasts ttached and spread on the trabeculae, which presented the validity of the model under proper mechanical condition. Experiment showed that mechanical environment promoted theproliferation of osteoblasts. The observation of proliferation of osteoblasts showed that the quantity of osteoblasts in the experimental group was higher than that in the control group 1,4,8,12,16,20,24, and 28 days after culturing. Therewas significant difference between the two groups 12,16,20,24,and 28 days afterculturing(P<0.05). Conclusion The establishment of the model can facilitate the study of mechanical responses of osteoblasts under different conditions.
Objective To review research progress of corneal tissueengineering.Methods The recent articles on corneal tissue engineering focus on source and selection of corneal cells, the effects of growth factors on culture of corneal cells in vitro. The preparation and selection of three-dimensional biomaterial scaffolds and their b and weak points were discussed. Results The corneal tissue engineering cells come from normal human corneal cells. The embryo corneal cell was excellent. Several kinds of growth factors play important roles in culture, growth and proliferation of corneal cell, and incroporated into matrix.Growth factors including basic fibroblast growth factor, keratinocyte growth factor, transforming growth factor β1 and epidermal growth factor was favor to corneal cell. Collagen, chitosan and glycosaninoglycans were chosen as biomaterial scaffolds. Conclusion Human tissue engineering cornea can be reconstructed and transplanted. It has good tissue compatibility and can be used as human corneal equivalents.
Objective To study the adhesion characteristic in vitrobetween porous biphasic calcium phosphate(BCP) nanocomposite and bone marrow mesenchymal stem cells (MSCs) that have been induced and proliferated. Methods MSCs obtained from SD ratbone marrow were in vitro induced and proliferated. After their osteoblastic phenotype were demonstrated, MSCs were seeded onto prepared porous BCP nanocomposite(experiment group)and common porous hydroxyapatite (control group). Their adhesion situation was analyzed by scanning electron microscope. The initial optimal cell seeding density was investigated between new pattern porous BCP nanocomposite and MSCs by MTT automated colormetric microassay method. Results The differentiation of MSCs to osteoblastic phenotype were demonstrated by the positive staining of mineralized node, alkaline phosphatase (ALP) and collagen typeⅠ, the most appropriate seeding density between them was 2×106/ml. The maximal number which MSCs could adhere to porous BCP nanocomposite was 1.28×107/cm3. Conclusion MSCs can differentiate to osteoblastic phenotype.The MSCs were well adhered to porous BCP nanocomposite.
Objective To investigate the feasibility oftissue engineered intervertebral disc for regeneration of discs. Methods A three-dimensional porous poly(L-lactic-co-glycolic acid) (PLGA) scaffold was fabricated by temperature induced phase separation method. Human fetal disc cells were isolated and cultured in vitro. The disc cells labeledwith a PKH-26 fluorescent dye were seeded into a threedimensional porous scaffold. The proliferation of disc cells with PKH-26 fluorescent labels was assessed by using MTT uptake, laser fluorescence microscopy and SEM. Results Human fetal disc cells displayed a polygonal shape in primary monolayer culture. A regular arrangement and microtubules orientationstructure scaffold with 50-300 μm in diameter was fabricated by thermal-induced phase separation technique. MTT uptake and fluorescent microscopy examination indicated that the seeded disc cells were viable and showed proliferation activity within a porous scaffold. Conclusion The above findings support potential applications of tissue engineered disc in treatment of disc degenerative diseases.
Objective To locate sinoatrial node (SAN) in suckl ing pigs, to develop a rel iable method for isolation, purification and cultivation of SAN cells and to observe the compatibil ity of SAN cells and Col I fiber scaffold. Methods Five newborn purebred ChangBaiShan suckl ing pigs (male and female), aged less than 1-day-old and weighing 0.45-0.55 kg, wereused. Multi-channels electrophysiological recorder was appl ied to detect the original site of atrial waves. Primary SAN cells harvested from that area were cultured by the conventional culture method and the purification culture method including differential velocity adherent technique and 5-BrdU treatment, respectively. Atrial myocytes isolated from the left atrium underwent purified culture. Cell morphology, time of cell attachment, time of unicellular pulsation, and pulsation frequency were observed using inverted microscope. The purified cultured SAN cells (5 × 105 cells/mL) were co-cultured with prewetted Col I fiber scaffold for 5 days, and then the cells were observed by HE staining and scanning electron microscope (SEM). Results The atrial waves occurred firstly at the area of SAN. The purified cultured SAN cells were spindle, triangular, and irregular in morphology, and the spindle cells comprised the greatest proportion. Atrial myocytes were not spindle-shaped, but primarily triangular and irregular. The proportion of spindle cells in the conventional cultured SAN cells was decreased from 73.0% ± 2.9% in the purified cultured SAN cells, to 44.7% ± 2.3% (P lt; 0.01), and the proportion of irregular cells increased from 7.0% ± 1.7% in the purified cultrued SAN cells to 36.1% ± 2.6% (P lt; 0.01) . The proportion of the triangular cells in the purified and the conventional cultured SAN cells was 20.0% ± 2.1% and 19.2% ± 2.5%, respectively (P gt; 0.05). At 5 days after co-culture, HE staining displayed lots of SAN cells in Col I fiber scaffold, and SEM demonstrated conglobate adherence of the cells to the surface and lateral pore wall of scaffold, mutual connections of the cell processes, or attachment of cells to lateral pore wall of scaffold through pseudopodia. Conclusion With accurate SAN location, the purification culture method containing differential velocity adherent technique and 5-BrdU treatment can increase the proportion of spindle cells and is a rel iable method for the purification and cultivation of SAN cells. The SAN cells and Col I fiber scaffold have a good cellular compatibil ity.
To summarize the medium-term cl inical result of bio-derived bone transplantation in orthopedics with tissue engineering technique. Methods From December 2000 to June 2001, 10 cases of various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogenous osteoblasts from periosteum (1 × 106/ mL) with bio-derived bone scaffold following 3 to 7 days co-culture. Six men and 4 women were involved in this study, aged from 14 to 70 years with a median of 42 years. Among them, there were 2 cases of bone cyst, 1 case of non-union of old fracture, 6 cases of fresh comminuted fracture with bone defect, and 1 case of chronic suppurative ostemyel itis. The total weight of tissue engineered bone was 3-15 g in all the cases, averaged 7.3 g in each case. Results The wound in all the case healed by first intention. For 7 year follow up, bone union was completed within 3.0 to 4.5 months in 9 cases, but loosening occurred and the graft was taken out 1 year after operation in 1 case. The X-ray films showed that 9 cases achieved union except one who received resection of the head of humerus. No obvious abnormities were observed, and the function of affected l imbs met daily l ife and work. Conclusion Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other compl ications are observed in the cl inical appl ication.
ObjectiveTo review the application of silk fibroin scaffold in bone tissue engineering. MethodsThe related literature about the application of silk fibroin scaffold in bone tissue engineering was reviewed, analyzed, and summarized. ResultsSilk fibroin can be manufactured into many types, such as hydrogel, film, nano-fiber, and three-dimensional scaffold, which have superior biocompatibility, slow biodegradability, nontoxic degradation products, and excellent mechanical strength. Meanwhile these silk fibroin biomaterials can be chemically modified and can be used to carry stem cells, growth factors, and compound inorganic matter. ConclusionSilk fibroin scaffolds can be widely used in bone tissue engineering. But it still needs further study to prepare the scaffold in accordance with the requirement of tissue engineering.
ObjectiveTo prepare bionic spinal cord scaffold of collagen-heparin sulfate by three-dimensional (3-D) printing, and provide a cell carrier for tissue engineering in the treatment of spinal cord injury. MethodsCollagen-heparin sulfate hydrogel was prepared firstly, and 3-D printer was used to make bionic spinal cord scaffold. The structure was observed to measure its porosity. The scaffold was immersed in simulated body fluid to observe the quality change. The neural stem cells (NSCs) were isolated from fetal rat brain cortex of 14 days pregnant Sprague-Dawley rats and cultured. The experiment was divided into 2 groups: in group A, the scaffold was co-cultured with rat NSCs for 7 days to observe cell adhesion and morphological changes;in group B, the NSCs were cultured in 24 wells culture plate precoating with poly lysine. MTT assay was used to detect the cell viability, and immunofluorescence staining was used to identify the differentiation of NSCs. ResultsBionic spinal cord scaffold was fabricated by 3-D printer successfully. Scanning electron microscope (SEM) observation revealed the micro porous structure with parallel and longitudinal arrangements and with the porosity of 90.25%±2.15%. in vitro, the value of pH was not changed obviously. After 8 weeks, the scaffold was completely degraded, and it met the requirements of tissue engineering scaffolds. MTT results showed that there was no significant difference in absorbence (A) value between 2 groups at 1, 3, and 7 days after culture (P>0.05). There were a lot of NSCs with reticular nerve fiber under light microscope in 2 groups;the cells adhered to the scaffold, and axons growth and neurosphere formation were observed in group A under SEM at 7 days after culture. The immunofluorescence staining observation showed that NSCs could differentiated into neurons and glial cells in 2 groups;the differentiation rate was 29.60%±2.68% in group A and was 10.90%±2.13% in group B, showing significant difference (t=17.30, P=0.01). ConclusionThe collagen-heparin sulfate scaffold by 3-D-printed has good biocompatibility and biological properties. It can promote the proliferation and differentiation of NSCs, and can used as a neural tissue engineered scaffold with great value of research and application.
ObjectiveTo analyze the progress in biological tissue engineering scaffold materials and the clinical application, as well as product development status. MethodsBased on extensive investigation in the status of research and application of biological tissue engineering scaffold materials, a comprehensive analysis was made. Meanwhile, a detailed analysis of research and product development was presented. ResultsConsiderable progress has been achieved in research, products transformation, clinical application, and supervision of biological scaffold for tissue engineering. New directions, new technology, and new products are constantly emerging. With the continuous progress of science and technology and continuous improvement of life sciences theory, the new direction and new focus still need to be continuously adjusted in order to meet the clinical needs. ConclusionFrom the aspect of industrial transformation feasibility, acellular scaffolds and extracellular matrix are the most promising new growth of both research and product development in this field.
Objective To review the decellularized methods for obtaining extracellular matrix (ECM) and the applications of decellularized ECM scaffold in tissue engineering. Methods Recent and related literature was extensively and comprehensively reviewed. The decellularized methods were summarized and classified. The effects of different sterilization methods on decellularized scaffolds were analyzed; the evaluation criterion of extent of decellularization was put forward; and the application of decellularized ECM scaffold in different tissues and organs engineering field was summarized. Results The decellularized methods mainly include physical methods, chemical methods, and biological methods, and different decellularization methods have different effects on the extent of cell removal and ECM composition and structure. Therefore, the best decellularization method will be chosen according to the characteristics of the tissues and decellularization methods to achieve the ideal result. Conclusion It is very important to choose the appropriate decellularized method for preparing the biological materials desired by tissue engineering. The biological scaffolds prepared by decellularized methods will play an important role in tissue engineering and regenerative medicine.