ObjectiveTo construct a multimodal imaging radiomics model based on enhanced CT features to predict tumor regression grade (TRG) in patients with locally advanced rectal cancer (LARC) following neoadjuvant chemoradiotherapy (NCRT). MethodsA retrospective analysis was conducted on the Database from Colorectal Cancer (DACCA) at West China Hospital of Sichuan University, including 199 LARC patients treated from October 2016 to October 2023. All patients underwent total mesorectal excision after NCRT. Clinical pathological information was collected, and radiomics features were extracted from CT images prior to NCRT. Python 3.13.0 was used for feature dimension reduction, and univariate logistic regression (LR) along with Lasso regression with 5-fold cross-validation were applied to select radiomics features. Patients were randomly divided into training and testing sets at a ratio of 7∶3 for machine learning and joint model construction. The model’s performance was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC). Receiver operating characteristic curve (ROC), confusion matrices, and clinical decision curves (DCA) were plotted to assess the model’s performance. ResultsAmong the 199 patients, 155 (77.89%) had poor therapeutic outcomes, while 44 (22.11%) had good outcomes. Univariate LR and Lasso regression identified 8 clinical pathological features and 5 radiomic features, including 1 shape feature, 2 first-order statistical features, and 2 texture features. LR, support vector machine (SVM), random forest (RF), and eXtreme gradient boosting (XGBoost) models were established. In the training set, the AUC values of LR, SVM, RF, XGBoost models were 0.99, 0.98, 1.00, and 1.00, respectively, with accuracy rates of 0.94, 0.93, 1.00, and 1.00, sensitivity rates of 0.98, 1.00, 1.00, and 1.00, and specificity rates of 0.80, 0.67, 1.00, and 1.00, respectively. In the testing set, the AUC values of 4 models were 0.97, 0.92, 0.96, and 0.95, with accuracy rates of 0.87, 0.87, 0.88, and 0.90, sensitivity rates of 1.00, 1.00, 1.00, and 0.95, and specificity rates of 0.50, 0.50, 0.56, and 0.75. Among the models, the XGBoost model had the best performance, with the highest accuracy and specificity rates. DCA indicated clinical benefits for all 4 models. ConclusionsThe multimodal imaging radiomics model based on enhanced CT has good clinical application value in predicting the efficacy of NCRT in LARC. It can accurately predict good and poor therapeutic outcomes, providing personalized clinical surgical interventions.
ObjectiveTo explore the value of a decision tree (DT) model based on CT for predicting pathological complete response (pCR) after neoadjuvant chemotherapy therapy (NACT) in patients with locally advanced rectal cancer (LARC).MethodsThe clinical data and DICOM images of CT examination of 244 patients who underwent radical surgery after the NACT from October 2016 to March 2019 in the Database from Colorectal Cancer (DACCA) in the West China Hospital were retrospectively analyzed. The ITK-SNAP software was used to select the largest level of tumor and sketch the region of interest. By using a random allocation software, 200 patients were allocated into the training set and 44 patients were allocated into the test set. The MATLAB software was used to read the CT images in DICOM format and extract and select radiomics features. Then these reduced-dimensions features were used to construct the prediction model. Finally, the receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), sensitivity, and specificity values were used to evaluate the prediction model.ResultsAccording to the postoperative pathological tumor regression grade (TRG) classification, there were 28 cases in the pCR group (TRG0) and 216 cases in the non-pCR group (TRG1–TRG3). The outcomes of patients with LARC after NACT were highly correlated with 13 radiomics features based on CT (6 grayscale features: mean, variance, deviation, skewness, kurtosis, energy; 3 texture features: contrast, correlation, homogeneity; 4 shape features: perimeter, diameter, area, shape). The AUC value of DT model based on CT was 0.772 [95% CI (0.656, 0.888)] for predicting pCR after the NACT in the patients with LARC. The accuracy of prediction was higher for the non-PCR patients (97.2%), but lower for the pCR patients (57.1%).ConclusionsIn this preliminary study, the DT model based on CT shows a lower prediction efficiency in judging pCR patient with LARC before operation as compared with homogeneity researches, so a more accurate prediction model of pCR patient will be optimized through advancing algorithm, expanding data set, and digging up more radiomics features.
Gastric cancer remains one of the most prevalent and fatal malignancies in China. Peritoneal metastasis represents a frequent mode of dissemination or recurrence in patients with advanced disease and confers an extremely poor prognosis. In recent years, considerable progress has been made in imaging techniques, with modalities including CT, ultrasound, MRI and PET-CT being implemented to evaluate peritoneal metastasis. However, adequate detection remains challenging, particularly for occult peritoneal metastasis. With the advent of precision medicine, radiomics and artificial intelligence have undergone rapid development and show considerable promise for the early prediction of peritoneal metastasis in gastric cancer, providing a new means of diagnosis and treatment for patients with peritoneal metastasis.
Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.
In order to solve the pathological grading of hepatocellular carcinomas (HCC) which depends on biopsy or surgical pathology invasively, a quantitative analysis method based on radiomics signature was proposed for pathological grading of HCC in non-contrast magnetic resonance imaging (MRI) images. The MRI images were integrated to predict clinical outcomes using 328 radiomics features, quantifying tumour image intensity, shape and text, which are extracted from lesion by manual segmentation. Least absolute shrinkage and selection operator (LASSO) were used to select the most-predictive radiomics features for the pathological grading. A radiomics signature, a clinical model, and a combined model were built. The association between the radiomics signature and HCC grading was explored. This quantitative analysis method was validated in 170 consecutive patients (training dataset: n = 125; validation dataset, n = 45), and cross-validation with receiver operating characteristic (ROC) analysis was performed and the area under the ROC curve (AUC) was employed as the prediction metric. Through the proposed method, AUC was 0.909 in training dataset and 0.800 in validation dataset, respectively. Overall, the prediction performances by radiomics features showed statistically significant correlations with pathological grading. The results showed that radiomics signature was developed to be a significant predictor for HCC pathological grading, which may serve as a noninvasive complementary tool for clinical doctors in determining the prognosis and therapeutic strategy for HCC.
Biliary tract cancer is characterized by occult onset, highly malignancy and poor prognosis. Traditional medical imaging is an important tool for surgical strategies and prognostic assessment, but it can no longer meet the urgent need for accurate and individualized treatment in patients with biliary tract cancer. With the advent of the digital imaging era, the advancement of artificial intelligence technology has given a new vitality to digital imaging, and provided more possibilities for the development of medical imaging in clinical applications. The application of radiomics in the diagnosis and differential diagnosis of benign and malignant tumors of biliary tract, assessment of lymph node status, early recurrence and prognosis assessment provides new means for the diagnosis and treatment of patients with biliary tract cancer.
ObjectiveTo investigate the value of a predictive model for sentinel lymph node (SLN) metastasis after neoadjuvant therapy (NAT) based on the radiomic features from multi-modality magnetic resonance imaging (MRI) in combination with clinicopathologic data. MethodsThe clinical data and MRI images of breast cancer patients (initially diagnosed with cN0, all underwent NAT and surgical treatment) from two hospitals (Affiliated Hospital of Southwest Medical University and Suining Central Hospital) from January 2018 to September 2024, were retrospectively collected. The radiomic features from the multi-modality images, including T2-weighted short tau inversion recovery (T2STIR), diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE), were extracted and selected. The predictive models for SLN metastasis after NAT were constructed using four algorithms: LightGBM, XGBoost, support vector machine (SVM), and logistic regression (LR), in combination with clinicopathologic data. The models were evaluated for performance and interpretability using receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis, and Shapley additive explanation (SHAP) analysis. ResultsA total of 236 breast cancer patients were enrolled in this study. Among them, 216 patients from the Southwest Medical University were subdivided in an 8∶2 ratio into a training set (n=173) and internal validation set (n=43), while 20 patients from the Suining Central Hospital served as the external validation set. The multivariate logistic regression analysis showed that the lymphovascular invasion [OR (95%CI)=21.215 (4.404, 102.202), P <0.001] and perineural invasion [OR (95%CI)=25.867 (1.870, 357.790), P=0.002] were the risk factors, while high Ki-67 expression [OR (95%CI)=0.119 (0.035, 0.404), P<0.001] was the protective factor of SLN metastasis after NAT. The predictive models utilizing multi-modality MRI and clinicopathologic data yielded area under the ROC curve values of the internal and external validation sets of 0.750 [95%CI=(0.395, 1.000)] / 0.625 [95%CI=(0.321, 0.926)] for LightGBM, 0.878 [95%CI=(0.707, 1.000)] / 0.778 [95%CI=(0.525, 0.986)] for XGBoost, 0.641 [95%CI=(0.488, 0.795)] / 0.681 [95%CI=(0.345, 1.000)] for SVM, and 0.667 [95%CI=(0.357, 0.945)] / 0.583 [95%CI=(0.196, 0.969)] for LR. The XGBoost demonstrated the best predictive performance. Further SHAP analysis revealed that the lymphovascular invasion, T2STAR-MRI_FIRSTORDER_Minimum, and platelet were the key features influencing the predictions of the models. ConclusionThe findings of this study suggest that XGBoost prediction model based on radiomic features derived from multi-modality MRI (T2STIR, DWI, and DCE) in combination with clinicopathologic data is able to predict SLN metastasis after NAT in patients with breast cancer.
ObjectiveTo summarize the progress of radiomics in the diagnosis and treatment of hepatocellular carcinoma and discuss its future direction, limitations and challenges. MethodWe retrieved the literature related to radiomics in the diagnosis and treatment of hepatocellular carcinoma and made a review. ResultsTraditional hepatocellular carcinoma imaging examination, diagnosis and differential diagnosis had certain limitations. Radiomics as an emerging technology, it helped extract tissue biological information that could not be detected by the naked eye from high-throughput quantitative images and transform into high-dimensional qualitative quantitative data, and either alone or in combination with other clinical and molecular data such as demographics, histology, genomics or proteomics or other clinical and molecular data to solve clinical problems, such as hepatocellular carcinoma diagnosis and differential diagnosis, staging and grading, therapeutic regimen development and predicting prognosis and survival after therapy, etc. At present, there were still several problems to be solved in radiomics, such as insufficient interpretability of the combined artificial intelligence-medical imaging approach, lack of uniform standards and lack of external validation, etc.ConclusionsThe study of radiomics in the diagnosis and treatment of hepatocellular carcinoma has been deepened and expanded to different degrees with great potential and application prospects. Radiomics brings greater benefits to the diagnosis, treatment and management of hepatocellular carcinoma patients, provides a new direction for optimizing medical decision-making and promoting the development of precision medicine. However, there are still some deficiencies and challenges to overcome in the radiomics technology and methods, which require extensive validation and optimization through further clinical trials.
ObjectiveTo review the progress of radiomics in the field of colorectal cancer in recent years and summarize its value in the imaging diagnosis of colorectal cancer.MethodsEighty English and seven Chinese articles were retrieved through PUBMED, OVID, CNKI, Weipu and Wanfang. The structure and content of these literatures were classified and analyzed.ResultsIn five studies predicting the preoperative stages of colorectal cancer based on CT radiomics, the area under curve (AUC) ranged from 0.736 to 0.817; in two studies predicting the preoperative stages of colorectal cancer based on MRI radiomics, the AUC were 0.87 and 0.827 respectively. In two studies about radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy based on CT, the AUC were 0.79 and 0.72 respectively; in four studies about radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy based on MRI, the AUC ranged from 0.84 to 0.979. In one study evaluating the sensitivity of neoadjuvant chemotherapy based on MRI radiomics, the AUC was 0.79. In one study predicting the postoperative survival rate based on MRI radiomics, the AUC value of the final model was 0.827. In one study, the accuracy of the model based on PET/CT radiomics in 4-year disease-free survival (DSS), progression-free survival (DFS) and overall survival (OS) were 0.87, 0.79 and 0.79 respectively.ConclusionAt present, radiomics has a valuable impact on preoperative staging, neoadjuvant therapy evaluation, and survival analysis of colorectal cancer.
ObjectiveTo summarize the current research progress in the prediction of the efficacy of neoadjuvant therapy of breast cancer based on the application of artificial intelligence (AI) and radiomics. MethodThe researches on the application of AI and radiomics in neoadjuvant therapy of breast cancer in recent 5 years at home and abroad were searched in CNKI, Google Scholar, Wanfang database and PubMed database, and the related research progress was reviewed. ResultsAI had developed rapidly in the field of medical imaging, and molybdenum target, ultrasound and magnetic resonance imaging combined with AI had been deepened and expanded in different degrees in the application research of breast cancer diagnosis and treatment. In the research of molybdenum target combined with AI, the high sensitivity of molybdenum target to microcalcification was mostly used to improve the accuracy of early detection and diagnosis of breast cancer, so as to achieve the clinical purpose of early detection and diagnosis. However, in terms of prediction of neoadjuvant efficacy research of breast cancer, ultrasound and magnetic resonance imaging combined with AI were more prevalent, and their popularity remained unabated. ConclusionIn the monitoring of neoadjuvant therapy for breast cancer, the use of properly designed AI and radiomics models can give full play to its role in the predicting the curative effect of neoadjuvant therapy, and help to guide doctors in clinical diagnosis and treatment and evaluate the prognosis of breast cancer patients.