Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.
The widespread application of low-dose computed tomography (LDCT) has significantly increased the detection of pulmonary small nodules, while accurate prediction of their growth patterns is crucial to avoid overdiagnosis or underdiagnosis. This article reviews recent research advances in predicting pulmonary nodule growth based on CT imaging, with a focus on summarizing key factors influencing nodule growth, such as baseline morphological parameters, dynamic indicators, and clinical characteristics, traditional prediction models (exponential and Gompertzian models), and the applications and limitations of radiomics-based and deep learning models. Although existing studies have achieved certain progress in predicting nodule growth, challenges such as small sample sizes and lack of external validation persist. Future research should prioritize the development of personalized and visualized prediction models integrated with larger-scale datasets to enhance predictive accuracy and clinical applicability.
Objective To predict the lymph node metastasis status of patients with invasive pulmonary adenocarcinoma by constructing machine learning models based on primary tumor radiomics, peritumoral radiomics, and habitat radiomics, and to evaluate the predictive performance and generalization ability of different imaging features. Methods A retrospective analysis was performed on the clinical data of 1 263 patients with invasive pulmonary adenocarcinoma who underwent surgery at the Department of Thoracic Surgery, Jiangsu Province Hospital, from 2016 to 2019. Habitat regions were delineated by applying K-means clustering (average cluster number of 2) to the grayscale values of CT images. The peritumoral region was defined as a uniformly expanded area of 3 mm around the primary tumor. The primary tumor region was automatically segmented using V-net combined with manual correction and annotation. Subsequently, radiomics features were extracted based on these regions, and stacked machine learning models were constructed. Model performance was evaluated on the training, testing, and internal validation sets using the area under the receiver operating characteristic curve (AUC), F1 score, recall, and precision. Results After excluding patients who did not meet the screening criteria, a total of 651 patients were included. The training set consisted of 468 patients (181 males, 287 females) with an average age of (58.39±11.23) years, ranging from 29 to 78 years, the testing set included 140 patients (56 males, 84 females) with an average age of (58.81±10.70) years, ranging from 34 to 82 years, and the internal validation set comprised 43 patients (14 males, 29 females) with an average age of (60.16±10.68) years, ranging from 29 to 78 years. Although the habitat radiomics model did not show the optimal performance in the training set, it exhibited superior performance in the internal validation set, with an AUC of 0.952 [95%CI (0.87, 1.00)], an F1 score of 84.62%, and a precision-recall AUC of 0.892, outperforming the models based on the primary tumor and peritumoral regions. ConclusionThe model constructed based on habitat radiomics demonstrated superior performance in the internal validation set, suggesting its potential for better generalization ability and clinical application in predicting lymph node metastasis status in pulmonary adenocarcinoma.
In order to solve the pathological grading of hepatocellular carcinomas (HCC) which depends on biopsy or surgical pathology invasively, a quantitative analysis method based on radiomics signature was proposed for pathological grading of HCC in non-contrast magnetic resonance imaging (MRI) images. The MRI images were integrated to predict clinical outcomes using 328 radiomics features, quantifying tumour image intensity, shape and text, which are extracted from lesion by manual segmentation. Least absolute shrinkage and selection operator (LASSO) were used to select the most-predictive radiomics features for the pathological grading. A radiomics signature, a clinical model, and a combined model were built. The association between the radiomics signature and HCC grading was explored. This quantitative analysis method was validated in 170 consecutive patients (training dataset: n = 125; validation dataset, n = 45), and cross-validation with receiver operating characteristic (ROC) analysis was performed and the area under the ROC curve (AUC) was employed as the prediction metric. Through the proposed method, AUC was 0.909 in training dataset and 0.800 in validation dataset, respectively. Overall, the prediction performances by radiomics features showed statistically significant correlations with pathological grading. The results showed that radiomics signature was developed to be a significant predictor for HCC pathological grading, which may serve as a noninvasive complementary tool for clinical doctors in determining the prognosis and therapeutic strategy for HCC.
Cancer presents a significant global public health challenge, impacting human health on a broad scale. In recent years, the rapid advancement of big data-based bioinformatics has unveiled crucial potential in precision oncology through various omics research methods. The advent of radiomics has notably expanded the application scope of medical imaging in the field. However, due to the multi-level and multifactorial nature of tumor initiation and progression, a single omics information remains insufficient to meet the demands for advancing precision oncology strategies. Multi-omics research has become an emerging trend. The research paradigm integrating radiomics with other omics offers a novel perspective for personalized decision-making in oncology. Nevertheless, there persists a need to introduce more integrated new technologies and theories to expedite the progress of this field.
ObjectiveTo construct a multimodal imaging radiomics model based on enhanced CT features to predict tumor regression grade (TRG) in patients with locally advanced rectal cancer (LARC) following neoadjuvant chemoradiotherapy (NCRT). MethodsA retrospective analysis was conducted on the Database from Colorectal Cancer (DACCA) at West China Hospital of Sichuan University, including 199 LARC patients treated from October 2016 to October 2023. All patients underwent total mesorectal excision after NCRT. Clinical pathological information was collected, and radiomics features were extracted from CT images prior to NCRT. Python 3.13.0 was used for feature dimension reduction, and univariate logistic regression (LR) along with Lasso regression with 5-fold cross-validation were applied to select radiomics features. Patients were randomly divided into training and testing sets at a ratio of 7∶3 for machine learning and joint model construction. The model’s performance was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC). Receiver operating characteristic curve (ROC), confusion matrices, and clinical decision curves (DCA) were plotted to assess the model’s performance. ResultsAmong the 199 patients, 155 (77.89%) had poor therapeutic outcomes, while 44 (22.11%) had good outcomes. Univariate LR and Lasso regression identified 8 clinical pathological features and 5 radiomic features, including 1 shape feature, 2 first-order statistical features, and 2 texture features. LR, support vector machine (SVM), random forest (RF), and eXtreme gradient boosting (XGBoost) models were established. In the training set, the AUC values of LR, SVM, RF, XGBoost models were 0.99, 0.98, 1.00, and 1.00, respectively, with accuracy rates of 0.94, 0.93, 1.00, and 1.00, sensitivity rates of 0.98, 1.00, 1.00, and 1.00, and specificity rates of 0.80, 0.67, 1.00, and 1.00, respectively. In the testing set, the AUC values of 4 models were 0.97, 0.92, 0.96, and 0.95, with accuracy rates of 0.87, 0.87, 0.88, and 0.90, sensitivity rates of 1.00, 1.00, 1.00, and 0.95, and specificity rates of 0.50, 0.50, 0.56, and 0.75. Among the models, the XGBoost model had the best performance, with the highest accuracy and specificity rates. DCA indicated clinical benefits for all 4 models. ConclusionsThe multimodal imaging radiomics model based on enhanced CT has good clinical application value in predicting the efficacy of NCRT in LARC. It can accurately predict good and poor therapeutic outcomes, providing personalized clinical surgical interventions.
Objective For potential patients with better prognosis of non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations, a simpler and more effective model with easy-to-obtain histopathological parameters was established. MethodsThe computed tomography (CT) images of 158 patients with EGFR-mutant NSCLC who were first diagnosed in West China Hospital of Sichuan University were retrospectively analyzed, and the target areas of the lesions were described. Patients were randomly assigned to either a model training group or a test group.The radiomics features were extracted from the CT images, and the least absolute shrinkage and selection operator (LASSO) regression method was used to screen out the valuable radiomics features. The logistic regression method was used to establish a radiomic model, and the nomogram was used to evaluate the discrimination ability. Finally, the calibration curve, receiver characteristic curve (ROC), Kaplan-Meier curve and decision curve analysis (DCA) were employed to assess model efficacy. ResultsA nomogram combining three important clinical factors : gender, lesion location, treatment, and imaging risk score was established to predict the 3-year, 5-year, and 8-year survival rates of NSCLC patients with EGFR mutation. The calibration curve demonstrated highly consistent between model-predicted survival probabilities and observed overall survival (OS). The area under the curve (AUC) -ROC of the predicted 3-year, 5-year and 8-year OS was 0.70, 0.79 and 0.68, respectively. The Kaplan-Meier curve revealed significant OS disparities when comparing high- and low-risk patient subgroups. The DCA curve showed that the predicted 3-year and 5-year OS increased more clinical benefits than the treatment of all patients or no treatment.ConclusionThe nomogram for predicting the survival prognosis of NSCLC patients with EGFR mutation was constructed and verified, which can effectively predict the survival time range of NSCLC patients, and provide a reference for more individualized treatment decisions for such patients in clinical practice.
This study aims to predict expression of estrogen receptor (ER) in breast cancer by radiomics. Firstly, breast cancer images are segmented automatically by phase-based active contour (PBAC) method. Secondly, high-throughput features of ultrasound images are extracted and quantized. A total of 404 high-throughput features are divided into three categories, such as morphology, texture and wavelet. Then, the features are selected by R language and genetic algorithm combining minimum-redundancy-maximum-relevance (mRMR) criterion. Finally, support vector machine (SVM) and AdaBoost are used as classifiers, achieving the goal of predicting ER by breast ultrasound image. One hundred and four cases of breast cancer patients were conducted in the experiment and optimal indicator was obtained using AdaBoost. The prediction accuracy of molecular marker ER could achieve 75.96% and the highest area under the receiver operating characteristic curve (AUC) was 79.39%. According to the results of experiment, the feasibility of predicting expression of ER in breast cancer using radiomics was verified.
ObjectiveTo summarize the application of radiomics in colorectal cancer.MethodsRelevant literatures about the therapeutic decision-making, therapeutic, and prognostic evaluation of colorectal cancer using radiomics were collected to make an review.ResultsRadiomics is of great value in preoperative stages, therapeutic, and prognostic evaluation in colorectal cancer.ConclusionRadiomics is an important part of precision medical imaging for colorectal cancer.
ObjectiveTo explore the utility of machine learning-based radiomics models for risk stratification of severe asymptomatic carotid stenosis (ACS). MethodsThe clinical data and head and neck CT angiography images of 188 patients with severe carotid artery stenosis at the Department of Cardiovascular Surgery, China-Japan Friendship Hospital from 2017 to 2021 were retrospectively collected. The patients were randomly divided into a training set (n=131, including 107 males and 24 females aged 68±8 years), and a validation set (n=57, including 50 males and 7 females aged 67±8 years). The volume of interest was manually outlined layer by layer along the edge of the carotid plaque on cross-section. Radiomics features were extracted using the Pyradiomics package of Python software. Intraclass and interclass correlation coefficient analysis, redundancy analysis, and least absolute shrinkage and selection operator regression analysis were used for feature selection. The selected radiomics features were constructed into a predictive model using 6 different supervised machine learning algorithms: logistic regression, decision tree, random forest, support vector machine, naive Bayes, and K nearest neighbor. The diagnostic efficacy of each prediction model was compared using the receiver operating characteristic (ROC) curve and the area under the curve (AUC), which were validated in the validation set. Calibration and clinical usefulness of the prediction model were evaluated using calibration curve and decision curve analysis (DCA). ResultsFour radiomics features were finally selected based on the training set for the construction of a predictive model. Among the 6 machine learning models, the logistic regression model exhibited higher and more stable diagnostic efficacy, with an AUC of 0.872, a sensitivity of 100.0%, and a specificity of 66.2% in the training set; the AUC, sensitivity and specificity in the validation set were 0.867, 83.3% and 78.8%, respectively. The calibration curve and DCA showed that the logistic regression model had good calibration and clinical usefulness. ConclusionThe machine learning-based radiomics model shows application value in the risk stratification of patients with severe ACS.