Objective To investigate the effect of Kartogenin (KGN) combined with adipose-derived stem cells (ADSCs) on tendon-bone healing after anterior cruciate ligament (ACL) reconstruction in rabbits. Methods After the primary ADSCs were cultured by passaging, the 3rd generation cells were cultured with 10 μmol/L KGN solution for 72 hours. The supernatant of KGN-ADSCs was harvested and mixed with fibrin glue at a ratio of 1∶1; the 3rd generation ADSCs were mixed with fibrin glue as a control. Eighty adult New Zealand white rabbits were taken and randomly divided into 4 groups: saline group (group A), ADSCs group (group B), KGN-ADSCs group (group C), and sham-operated group (group D). After the ACL reconstruction model was prepared in groups A-C, the saline, the mixture of ADSCs and fibrin glue, and the mixture of supernatant of KGN-ADSCs and fibrin glue were injected into the tendon-bone interface and tendon gap, respectively. ACL was only exposed without other treatment in group D. The general conditions of the animals were observed after operation. At 6 and 12 weeks, the tendon-bone interface tissues and ACL specimens were taken and the tendon-bone healing was observed by HE staining, c-Jun N-terminal kinase (JNK) immunohistochemical staining, and TUNEL apoptosis assay. The fibroblasts were counted, and the positive expression rate of JNK protein and apoptosis index (AI) were measured. At the same time point, the tensile strength test was performed to measure the maximum load and the maximum tensile distance to observe the biomechanical properties. Results Twenty-eight rabbits were excluded from the study due to incision infection or death, and finally 12, 12, 12, and 16 rabbits in groups A-D were included in the study, respectively. After operation, the tendon-bone interface of groups A and B healed poorly, while group C healed well. At 6 and 12 weeks, the number of fibroblasts and positive expression rate of JNK protein in group C were significantly higher than those of groups A, B, and D (P<0.05). Compared with 6 weeks, the number of fibroblasts gradually decreased and the positive expression rate of JNK protein and AI decreased in group C at 12 weeks after operation, with significant differences (P<0.05). Biomechanical tests showed that the maximum loads at 6 and 12 weeks after operation in group C were higher than in groups A and B, but lower than those in group D, while the maximum tensile distance results were opposite, but the differences between groups were significant (P<0.05). Conclusion After ACL reconstruction, local injection of a mixture of KGN-ADSCs and fibrin glue can promote the tendon-bone healing and enhance the mechanical strength and tensile resistance of the tendon-bone interface.
ObjectiveTo investigate the mechanism of magnesium sulfate in protecting rabbit cartilage by initiating autophagy.MethodsTwenty-four adult female New Zealand rabbits were used to prepare post-traumatic osteoarthritis (PTOA) models by anterior cruciate ligament transection. Then, the PTOA models were randomly divided into PTOA group, distilled water group, and magnesium sulfate group, with 8 rabbits in each group. Immediately after operation, the distilled water group and the magnesium sulfate group were injected with 0.5 mL distilled water and 20 mmol/L magnesium sulfate solution in the joint cavity 3 times a week for 4 weeks, respectively. The PTOA group was not treated. The general condition of the animals was observed after operation. After 4 weeks, the expressions of tumor necrosis factor α (TNF-α) and collagen typeⅡ in the joint fluid and the expression of collagen type Ⅱ in venous blood were detected by ELISA assay. The protein expressions of transient receptor potential channel vanilloid 5 (TRPV5) and microtubule associated protein 1 light chain 3 (LC3; LC3-Ⅱ/LC3-Ⅰ) in femoral cartilage were detected by Western blot. The mRNA expressions of interleukin 1β (IL-1β), TNF-α, matrix metalloproteinases 3 (MMP-3) in synovial tissue and collagen type Ⅱ, Aggrecan (AGN), SOX9 in cartilage tissue were detected by real-time fluorescence quantitative PCR. Cartilage tissue sections were stained with HE staining, Masson staining, and Alcian blue staining and scored according to the modified histological osteoarthritis (OA) score.ResultsAll animals survived until the experiment was completed. Compared with the other two groups, the expression of TNF-α in joint effusion and collagen type Ⅱ in joint effusion and venous blood were decreased in magnesium sulfate group; the protein expression of TRPV5 decreased, and the ratio of LC3-Ⅱ/LC3-Ⅰ increased significantly; the mRNA expressions of IL-1β, TNF-α, and MMP-3 in synovial tissue were decreased, and the mRNA expressions of collagen type Ⅱ, AGN, and SOX9 in cartilage tissue were increased; OA scores also decreased significantly. All differences were statistically significant (P<0.05). There was no significant difference in the above indicators between the PTOA group and the distilled water group (P>0.05).ConclusionIntra-articular injection of magnesium sulfate can reduce intra-articular inflammation, reduce the loss of collagen type Ⅱ and AGN, and is beneficial to cartilage regeneration in rabbits. The mechanism may be related to the initiation of chondroautophagy by inhibiting the calcium channel TRPV5.
ObjectiveTo explore the effect of icariin on early steroid-induced osteonecrosis of the femoral head in rabbits.MethodsFifty mature New Zealand rabbits (weighing, 2.5-3.0 kg) were randomly divided into control group (n=10), model group (n=20), and experimental group (n=20). The rabbits of model and experimental groups were injected with lipopolysaccharide and methylprednisolone to establish the animal model of early steroid-induced osteonecrosis of the femoral head. The rabbits of experimental group were feeded with icariin solution once a day for 6 weeks since the first injection of methylprednisolone, whereas the rabbits of control and model groups were given normal saline at the same time points. The left femoral heads were removed after 6 weeks and gross morphological features were evaluated. Micro-CT scan was performed to analyze the trabecular microstructure with the following parameters: trabecular bone volume to total volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Tn), and trabecular separation (Tb.Sp). The Micro-CT scan was also converted to three-dimensional reconstruction images for observation. HE staining was applied to observe the trabecular structure and morphological changes of osteocytes and marrow adipocytes. It was also used to determine whether the samples of femoral heads occurred osteonecrosis based on the criteria for pathological diagnosis, and calculate the rate of empty lacunae.ResultsSeven rabbits died during the study, and 9, 16, and 18 rabbits in the control, model, and experimental groups, respectively, enrolled the final analysis. Compared with control group, the femoral head collapse and trabecular breaks were more obvious, and the trabeculae were sparse with irregular arrangement in the model group according to the results of gross observation, Micro-CT scan, and three-dimensional reconstruction images. But in the experimental group, the surface of femoral head was slight shrinking without obvious collapse, and the degeneration of trabecular structure was mild. According to bone microstructures analysis, the Tb.N, Tb.Tn, and BV/TV of femoral head in model and experimental groups were lower than those in control group, while the Tb.Sp in the model and experimental groups were significantly higher. The Tb.N, Tb.Tn, and BV/TV of femoral head in experimental group were higher than those in model group, while the Tb.Sp in the experimental group was significantly lower. The differences between groups were all significant (P<0.05). In the model group, HE staining showed that the number of osteocytes reduced, the number of empty lacunae increased, and the marrow adipocytes piled up in the space between femoral trabeculae, some even mashed together like a cyst. In the experimental group, the trabecular structure was still relatively complete compared with model group, no obvious apoptosis of osteocytes was observed, the size and number of adipocytes were basically normal. None of the animals in control group occurred osteonecrosis of the femoral head based on the criteria for pathological diagnosis, and the incidence of osteonecrosis were 81.3% (13/16) in the model group and 66.7% (12/18) in the experimental group, and the difference was not significant (P=0.448). The rate of empty lacunae of osteonecrotic femoral heads in the model group was 33.1%±1.4%, which was higher than that in experimental group (18.9%±0.8%) and in control group (12.7%±1.5%), and the differences between groups were significant (P<0.05).ConclusionThe icariin has a protective effect on the early steroid-induced osteonecrosis of the femoral head in rabbits, which can decrease osteocytes apoptosis, improve the bone microstructure, and delay such disease processes.
An experimental model of proliferative vitretinopathy(PVR) induced by macrophages was used for the evaluation of drug efficacy of daunomycin encapsulated in liposomes in the treatment of PVR.Five mu;g daunomycin(n=40),10mu;g daunomycin-liposome(DL,n=30)and 0.1 ml saline or empty liposomes(n=40,as controls)were injected into the rabbit vitreous after macrophage injection.Retinal detachment developed in 77.5% of the control eyes on day 28,compared to 33.3% of the eyes treated with DL(P<0.01)and 50% of the daunomycin-treated eyes(P<0.05).The results suggest that encapsulation in liposomes of cytotoxic agents can enhance drug efficacy.The phasic course of development of PVR is important in the selection of particular drugs. (Chin J Ocul Fundus Dis,1993,9:77-80)
We compared the sensitivities of human embryo conjtmctival fihroblasts(HECF)and rabbit conjunctival fibroblasts(RCF)m five anlineoplasties in vitro.When the concentration of vincrismum and doxorubicin was 0.001~10mg/L.5-FU was 1~1000mg/L and cisplatin was 0.01~10mg/L,the sensitivities of HECF to tile drugs were lower than that of RCF (Plt;0.01).while the difference of the sensitivilics be;ween HECF and RCF to VP-16 was not significant (P<0.05). The results suggested that the selection of therapeutic agents for intraocular proliferative disease wilh'hunmn conjunctiva fihroblasts may be more valuable than that with RCF. (Chin J Ocul Fundus Dis,1994,10:223-225)
ObjectiveTo investigate the feasibility of using magnetic beads to locate small pulmonary nodules.MethodsTwelve rabbits were randomly divided into two groups, 6 in each group. One group underwent thoracotomy after anesthesia and the other group underwent percutaneous puncture under the guidance of X-ray. One and two cylindrical tracer magnets (magnetic beads) with a diameter of 1 mm and a height of 3 mm were injected adjacent to the imaginary pulmonary nodules in left lung in each group. The magnetic beads beside the imaginary nodules were attracted by a pursuit magnet with a diameter of 9 mm and a height of 19 mm. The effectiveness of localization by magnetic beads were determined by attraction between tracer and pursuit magnets.ResultsAll processes were uneven in 12 rabbits. There was micro hemorrhage and no hematoma in the lung tissue at the injection site of the magnetic beads. When tracked with the pursuit magnets, there was one bead divorce in cases that one bead was injected, but no migration or divorce of the magnetic beads in cases that two magnetic beads were simultaneously injected to localize the small pulmonary nodules.ConclusionThe feasibility of using magnetic beads to locate small pulmonary nodules has been preliminarily verified.
ObjectiveTo preliminarily investigate morghological changes of rabbits reshaping ear cartilage assisted by microdissection needle and explore feasibility of new therapy for ear deformity.MethodsThe bilateral ears of 5 male New Zealand rabbits (aged, 5-6 months) were fixed maintaining the curvature and randomly divided into 2 groups (5 ears in each group). The ears were stimulated by microdissection needle in experimental group and were not treated with stimulation in control group. The skin reaction in the experimental group was observed immediately and at 4 weeks after stimulation. Then, the fixtures were removed at 4 weeks, and the shapes of the ears were observed. The cartilages were harvested from the ears to examined morphological changes after HE staining, and measured the chondrocyte layer thickness.ResultsAll rabbits survived until the end of the experiment. The skin has healed completely after 4 weeks in experimental group. After removing fixtures, the ears in the two groups all maintained certain forms momentarily; while 24 hours later, the ears in the control group mostly recovered original form, and the ears in the experimental group still maintained certain molding form until 8 weeks. HE staining showed there were smooth cartilage and uniform distribution of cells in the control group; the matrix staining was basically consistent; and the skin was normal appearance with epidermis, dermis, and cartilage of normal aspect. But the proliferation of chondrocyte with more layers of cells were observed in the experimental group. In addition, there were degeneration and injury of cartilage cells and connective tissue with necrotic cells and inflammatory cells at needle insertion sites. The chondrocyte layer thickness was (385.714±2.027) μm in the control group and (1 594.732±1.872) μm in the experimental group, there was significant difference between the two groups (t=–759.059, P=0.000).ConclusionRabbit ear cartilage can be effectively reshaped by microdissection needle. Proliferation of chondrocyte and changes in matrix can be found during the reshaping process.
ObjectiveTo evaluate the bone repair efficacy of the new nano-hydroxyapatite (n-HA)/polyurethane (PU) composite scaffold in the treatment of chronic osteomyelitis in tibia.MethodsA novel levofloxacin@mesoporous silica microspheres (Lev@MSNs)/n-HA/PU was successfully synthesized. Its surface structure was observed by scanning electron microscopy (SEM). Fifty adult female New Zealand rabbits were randomly selected, and osteomyelitis was induced in the right tibia of the rabbit by injecting bacterial suspension (Staphylococcus aureus; 3×107 CFU/mL), which of the method was described by Norden. A total of 45 animals with the evidence of osteomyelitis were randomly divided into 4 groups, and the right medullary cavity of each animal was exposed. Animals in the blank control group (group A, n=9) were treated with exhaustive debridement only. The remaining animals were first treated by exhaustive debridement, and received implantations of 5 mg Lev@PMMA (group B, n=12), 1 mg Lev@MSNs/n-HA/PU (group C, n=12), and 5 mg Lev@MSNs/n-HA/PU (group D, n=12), respectively. At 12 weeks postoperatively, the right tibia of rabbits were observed by X-ray film, and then gross observation, methylene blue/acid fuchsin staining, and SEM observation of implant-bone interface, as well as biomechanical test (measuring the maximal compression force) were performed.ResultsX-ray films showed that the infection were severer than those of preoperation in group A, while the control of inflammation and bone healing of rabbits in group D were obviously better than those at preoperation. The gross observation showed extensive bone destruction in group A, a significant gap between bone tissue and the material in groups B and C, and close combination between bone tissue and the material in group D. The histology of the resected specimens showed that there was no obvious new bone formation around the materials in groups B and C, and there was abundant new bone formation around the periphery and along the voids of the materials and active bone remodeling in group D. The SEM observation of the bone-implant interface demonstrated that no new bone formation was observed at the bone-implant interface in groups B and C. However, bony connections and blurred boundaries were observed between the material and host bone tissue in group D. The biomechanical test showed the maximal compression force of groups B and D were significantly higher than that of groups A and C (P<0.05), but there was no significant difference between groups B and D (P>0.05).ConclusionThe novel synthetic composite Lev@MSNs/n-HA/PU exhibit good antibacterial activities, osteoconductivity, and biomechanical properties, and show great potential in the treatment of chronic osteomyelitis of rabbits.
ObjectiveTo evaluate the effect of bone morphogenetic protein 7 (BMP-7)/poly (lactide-co-glycolide) (PLGA) microspheres on in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs).MethodsBMP-7/PLGA microspheres were fabricated by double emulsion-drying in liquid method. After mixing BMP-7/PLGA microspheres with the chondrogenic differentiation medium, the supernatant was collected on the 1st, 3rd, 7th, 14th, and 21st day as the releasing solution. The BMSCs were isolated from the bilateral femurs and tibias of 3-5 days old New Zealand rabbits, and the 3rd generation BMSCs were divided into 2 groups: microspheres group and control group. The BMSCs in microspheres group were cultured by 200 μL BMP-7/PLGA microspheres releasing solution in the process of changing liquid every 2-3 days, while in control group were cultured by chondrogenic medium. The cell proliferation (by MTT assay) and the glycosaminoglycan (GAG) contents (by Alician blue staining) were detected after chondrogenic cultured for 1, 3, 7, 14, and 21 days. The chondrogenic differentiation of BMSCs was observed by safranine O staining, toluidine blue staining, and collagen type Ⅱ immunohistochemistry staining at 21 days.ResultsMTT test showed that BMSCs proliferated rapidly in 2 groups at 1, 3, and 7 days; after 7 days, the proliferation of BMSCs in the control group was slow and the BMSCs in microspheres group continued to proliferate rapidly. There was no significant difference of the absorbance (A) value at 1, 3, and 7 days between 2 groups (P>0.05), but theA value at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05). Compared with control group at 21 days, in microsphere group, almost all nuclei were dyed bright red by safranine O staining, almost all the nuclei appeared metachromatic purple red by toluidine blue staining, and the most nuclei were yellow or brown by immunohistochemical staining of collagen type Ⅱ. Alcian blue staining showed that the content of GAG in 2 groups increased continuously at different time points; after 7 days, the increasing trend of the control group was slow and the microspheres group continued hypersecretion. There was no significant difference of the GAG content at 1, 3, and 7 days between 2 groups (P>0.05), but the GAG content at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05).ConclusionBMP-7/PLGA microspheres prepared by double emulsion-drying in liquid method in vitro can promote proliferation and chondrogenic differentiation of rabbit BMSCs.
In order to repair cartilage defect in joint with transplantation of cryopreserved homologous embryonic periosteum, 30 rabbits were used and divided into two groups. A 4 mm x 7 mm whole thickness cartilage defect was made in the patellar groove of femur of each rabbit. The homologous embryonic rabbit skull periosteum (ERSP), preserved in two-step freezing schedule, was transplanted onto the cartilage defect of joints of one group and autogenous periosteal graft was done in the joint defect of the other group. The knees were not immobilized, following operation and 16 weeks later, the newly formed tissue in the defects were assessed by gross observation, histochemical examination and biochemical analysis. The results showed that new hyaline-like cartilage was formed in the cryopreserved ERSP grafted knee, and had no significant difference from that of the knee receiving autogenous periosteal graft, but had significant difference from that of the fresh ERSP grafted knee and the non-grafted knee. Furthermore, the new hyaline-like cartilage had the biochemical characteristics of a fibrous cartilage. The conclusion was that this method might be feasible to repair articular cartilage defects.