ObjectiveTo evaluate early outcomes of transthoracic pulmonary valve implantation for the treatment of moderate and severe pulmonary regurgitation by using homemade self-expanding valve (SalusTM). MethodsPatients with severe pulmonary regurgitation who underwent transthoracic pulmonary valve implantation in Guangdong Provincial People’s Hospital from September 2, 2021 to November 25, 2022 were prospectively enrolled. The early postoperative complications and improvement of valve and heart function were summarized and analyzed. ResultsA total of 25 patients were enrolled, including 16 males and 9 females, with an average age of 24.5±1.5 years and an average weight of 57.0±3.0 kg. The mean systolic diameters of the bifurcation near the main pulmonary artery, the stenosis of the middle segment of the aorta and near the valve of the right ventricular outflow tract of the patients were 31.8±7.4 mm, 30.6±5.9 mm and 38.4±8.0 mm, respectively. All patients were successfully implanted with valves, and there were no serious complications such as death, coronary compression, stent fracture, valve displacement and infective endocarditis in the early postoperative period. The indexed left atrial longitudinal diameter, indexed right atrial longitudinal diameter, and indexed right ventricular outflow tract anteroposterior diameter decreased significantly after the operation. The degree of tricuspid and pulmonary valve regurgitation and the indexed regurgitation area decreased significantly. The above differences were statistically significant (P<0.05). ConclusionThe early outcomes of transthoracic pulmonary valve implantation with homemade self-expanding pulmonary valve (SalusTM) in the treatment of severe pulmonary regurgitation is relatively good, and the long-term outcomes need to be verified by the long-term follow-up studies with large samples.
This article reports a 16-year-old patient with severe pulmonary valve regurgitation after corrective surgery for tetralogy of Fallot. The shape of the right ventricular outflow tract to the main pulmonary artery was cone-shaped, which is extremely challenging. After admission, percutaneous pulmonary valve replacement with self-expanding valve was successfully performed. The patient’s condition remained stable during the 2-year follow-up period after surgery. This case aims to provide a reference for percutaneous pulmonary valve replacement in patients with cone-shaped right ventricular outflow tract.
Objective To introduce a modified technique of right ventricular outflow tract (RVOT) reconstruction using a handmade bicuspid pulmonary valve crafted from expanded polytetrafluoroethylene (ePTFE) and to summarize the early single-center experience. Methods Patients with complex congenital heart disease (CHD) who underwent RVOT reconstruction with a handmade ePTFE bicuspid pulmonary valve due to pulmonary regurgitation at Guangdong Provincial People’s Hospital from April 2021 to February 2022 were selected. Postoperative artificial valve function and right heart function indicators were evaluated. Results A total of 17 patients were included, comprising 10 males and 7 females, with a mean age of (18.18±12.14) years and a mean body weight of (40.94±19.45) kg. Sixteen patients underwent reconstruction with a handmade valved conduit, with conduit sizes ranging from 18 to 24 mm. No patients required mechanical circulatory support, and no in-hospital deaths occurred. During a mean follow-up period of 12.89 months, only one patient developed valve dysfunction, and no related complications or adverse events were observed. The degree of pulmonary regurgitation was significantly improved post-RVOT reconstruction and during follow-up compared to preoperative levels (P<0.001). Postoperative right atrial diameter, right ventricular diameter, and tricuspid regurgitation area were all significantly reduced compared to preoperative values (P<0.05). Conclusion The use of a 0.1 mm ePTFE handmade bicuspid pulmonary valve for RVOT reconstruction in complex CHD is a feasible, effective, and safe technique.