ObjectiveTo explore the hemodynamic effects of inhaled nitric oxide (iNO) on postoperative hemodynamic in patients with cyanotic congenital heart disease (CHD) combined with decreased pulmonary blood flow.MethodsFrom 2014 to 2018, there were 1 764 patients who received corrective repair of cyanotic CHD with decreased pulmonary blood flow in the Department of Pediatric Cardiac Surgery of Fuwai Hospital. We included 61 patients with the ratio of right ventricular systolic pressure to systolic blood pressure (SBP) ≥75% after weaning from cardiopulmonary bypass. There were 41 males and 20 females, with the age of 20.5 (9.0, 39.0) months and weight of 12.5±7.8 kg. The patients were divided into two groups: a conventional group (33 patients, conventional therapy only) and a combined therapy group (28 patients, iNO combined with conventional therapy). The hemodynamics during the first 24 hours after iNO therapy and the in-hospital outcomes of the two groups were investigated and compared.ResultsThere was no statistical difference between the two groups in demographic characteristics and surgical parameters (P>0.05). The hemodynamic effects of iNO within 24 hours included the decrease in the vasoactive inotropic score (VIS, 21.6±6.6 vs. 17.3±7.2, P=0.020) along with the increase in blood pressure (SBP: 73.7±9.7 mm Hg vs. 90.8±9.1 mm Hg, P<0.001) , the decrease in central venous pressure (10.0±3.1 mm Hg vs. 7.9±2.1 mm Hg, P=0.020), the decrease in lactate (2.2±1.7 mmol/L vs. 1.2±0.5 mmol/L, P<0.001) and increase in urine output [2.8±1.7 mL/(kg·h) vs. 4.9±2.2 mL/(kg·h), P<0.001]. The decrease of VIS at 24 h after the surgery in the conventional therapy group was not statistically significant (22.1±7.9 vs. 20.0±8.5, P=0.232). Besides, we discovered that the need for renal replacement therapy (RRT) was less in the combined therapy group than that in the conventional therapy group, especially in the moderate complicated surgery [risk adjustment in congenital heart surgery (RACHS-1) ≤3] subgroup (9.5% vs. 40.7%, P=0.016).ConclusionIn pediatric patients after corrective repair of cyanotic and pulmonary blood follow decreased CHD with increased pulmonary vascular resistance, iNO combined with conventional therapy can improve the hemodynamics effectively. Compared with the conventional therapy, the combined therapy with iNO can decrease the VIS and the need for RRT, which is beneficial to the postoperative recovery of patients.
Objective To systematically evaluate the impact of pulmonary hypertension (PH) on the prognosis of patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). Methods A computerized search was conducted in CNKI, Wanfang Data, VIP, CBM, PubMed, The Cochrane Library, EMbase, and Web of Science databases from inception to June 2023 for cohort studies on the prognostic impact of PH in severe AS patients undergoing TAVR. Two researchers independently screened the literature, extracted data, and assessed the quality of included studies. Stata 17.0 software was used for meta-analysis. Results A total of 16 cohort studies were included, all with Newcastle-Ottawa Scale scores≥7. Meta-analysis results showed that, compared with AS patients without PH, those with PH had significantly higher 1-year all-cause mortality after TAVR [OR=2.10, 95%CI (1.60, 2.75), P<0.01], 30-day all-cause mortality [OR=2.09, 95%CI (1.54, 2.83), P<0.01], and cardiovascular mortality [OR=1.49, 95%CI (1.18, 1.90), P<0.01]. The differences between the two groups in major bleeding events, stroke, myocardial infarction, pacemaker implantation, and postoperative renal failure were not statistically significant. For outcome indicators with significant heterogeneity, subgroup analyses were performed based on PH measurement methods, diagnostic criteria, and different types of PH. The results showed that most subgroup combined results were consistent with the overall findings and that heterogeneity was significantly reduced. Conclusion PH significantly increases the 30-day all-cause mortality, 1-year all-cause mortality, and cardiovascular mortality in patients with severe AS undergoing TAVR.
Objective To investigate the effect of chronic altitude hypoxia exposure on serum lipoprotein levels in healthy subjects and patients with pulmonary hypertension, and whether there is a difference in serum lipoprotein levels between patients with pulmonary hypertension at middle and high altitude. Methods The case data of 245 Han patients with COPD complicated with pulmonary hypertension admitted to the Affiliated Hospital of Qinghai University from January 2018 to September 2022 were retrospectively analyzed. According to the altitude of their long-term residence before onset, the patients were divided into two groups, 119 cases in the middle altitude group (1500 m~2500 m). 126 cases were in the high altitude group of 2500 m~4500 m. In addition, the physical examination data of 50 healthy people in the intermediate and high altitude groups were collected as the control group (the age and gender of the healthy people in the same altitude group were similar to those in the COPD-PH group), a total of 4 groups were collected. The general data, pulmonary artery systolic blood pressure (PASP), total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C) of the four groups were compared, and the correlation between pulmonary artery systolic blood pressure (PASP) and related variables was analyzed. ResultsThere were no significant differences in age, gender, smoking and drinking between the healthy control group and COPD-PH group (all P>0.05). There were significant differences in body mass index, PASP, TC, TG, HDL-C, LDL-C, TG/HDL-C, HDL-C/LDL-C between the healthy control group and the COPD-PH group (all P<0.05). In the healthy control group, only BMI was significantly different between the high altitude group and the middle altitude group (P<0.05). In the COPD-PH group, PASP, BMI, TC, HDL-C and TG/HDL-C in the high altitude group were significantly different from those in the moderate altitude group (all P<0.05). There were no significant differences in age, gender, smoking, drinking, TG, LDL-C and HDL-C/LDL-C between the two groups (all P>0.05), when gender, age, altitude, body mass index, PASP, smoking and drinking were included in the multi-factor linear regression equation of lipoprotein (TC, TG, HDL-C and LDL-C), it was found that different elevations (middle and higher elevations) only had statistically different effects on HDL-C (b=-0.046, t=-2.209, P=0.028). Correlation analysis showed that PASP was not correlated with age, altitude, body mass index and blood lipids (TC, TG, HDL-C, LDL-C) in the healthy control group (all P>0.05). However, in the COPD-PH group, PASP was negatively correlated with blood lipid indicators (TC, HDL-C and LDL-C). PASP was positively correlated with altitude (a risk factor for hypoxia). ConclusionsHypoxia environment factors characterized by altitude are closely related to the severity of pulmonary artery pressure in patients with COPD-PH, and higher pulmonary artery systolic pressure is closely related to lower levels of TC, HDL-C and LDL-C.
Objective To construct a risk prediction score model for serious adverse event (SAE) after cardiac catheterization in patients with adult congenital heart disease (ACHD) and pulmonary hypertension (PH) and verify its predictive effect. Methods The patients with PH who underwent cardiac catheterization in Wuhan Asian Heart Hospital Affiliated to Wuhan University of Science and Technology from January 2018 to January 2022 were retrospectively collected. The patients were randomly divided into a model group and a validation group according to the order of admission. The model group was divided into a SAE group and a non-SAE group according to whether SAE occurred after the catheterization. The data of the two groups were compared, and the risk prediction score model was established according to the results of multivariate logistic regression analysis. The discrimination and calibration of the model were evaluated using the area under the receiver operating characteristic (ROC) curve and the Hosmer-Lemeshow test, respectively. Results A total of 758 patients were enrolled, including 240 (31.7%) males and 518 (68.3%) females, with a mean age of 43.1 (18.0-81.0) years. There were 530 patients in the model group (47 patients in the SAE group and 483 patients in the non-SAE group) and 228 patients in the validation group. Univariate analysis showed statistical differences in age, smoking history, valvular disease history, heart failure history, N-terminal pro-B-type natriuretic peptide, and other factors between the SAE and non-SAE groups (P<0.05). Multivariate analysis showed that age≥50 years, history of heart failure, moderate to severe congenital heart disease, moderate to severe PH, cardiac catheterization and treatment, surgical general anesthesia, and N-terminal pro-B-type natriuretic peptide≥126.65 pg/mL were risk factors for SAE after cardiac catheterization for ACHD-PH patients (P<0.05). The risk prediction score model had a total score of 0-139 points and patients who had a score>50 points were high-risk patients. Model validation results showed an area under the ROC curve of 0.937 (95%CI 0.897-0.976). Hosmer-Lemeshow goodness-of-fit test: χ2=3.847, P=0.797. Conclusion Age≥50 years, history of heart failure, moderate to severe congenital heart disease, moderate to severe PH, cardiac catheterization and treatment, general anesthesia for surgery, and N-terminal pro-B-type natriuretic peptide≥126.65 pg/mL were risk factors for SAE after cardiac catheterization for ACHD-PH patients. The risk prediction model based on these factors has a high predictive value and can be applied to the risk assessment of SAE after interventional therapy in ACHD-PH patients to help clinicians perform early intervention.
Abstract: Objective To analyze the results of preoperative evaluation of the operability of chronic thromboembolic pulmonary hypertension (CTEPH), and to find parameters to define the inconsistency between the operable lesions of CTEPH and pulmonary vascular resistance (PVR). Methods A total of 133 patients with CTEPH admitted into Anzhen Hospital were enrolled for preoperative assessment of operability from March 2002 to May 2010. There were 86 males and 47 females with an age of 49.10±22.70 years. The patients were divided into operable group (group A, n=82,age of 47.80±21.60 years) and inoperable group (group B, n=51, age of 50.30±23.40 years) according to the assessment suggestion. We evaluated the occluded pulmonary segment(OPS) of all the patients through pulmonary ventilation/perfusion scintigraphy, and measured the plasma aminoterminal Btype natriuretic peptide (NT-pro BNP) and PVR. Then the ratio of NT-pro BNP to OPS and PVR to OPS were calculated. [CM(159mm]Results Out of the 82 patients with CTEPH in group A, 81 were positive in the anesthesia test and were subject to pulmonary thromboendarterectomy(PTE). In the whole cohorts of operated patients, there was one early death due to persistent pulmonary hypertension and right heart failure. The specificity of the anesthesia test was 98.78%. Eighty patients (98.77%) were followed up in this group for a period of 1 to 95 months (42.70±28.40 months). During the followup, there was one late death due to pulmonary artery hypertension crisis. Among the 51 patients with CTEPH in group B, there were 32 patients (62.75%) with surgically inaccessible lesions, 13 patients (25.49%) with surgical accessible CTEPH concomitant with severe diseases, and 6 patients (11.76%) with inconsistency between the surgical accessible lesion and high PVR. The ratio of NT-pro BNP to OPS and PVR to OPS for the 81 positive patients in group A was in the range of 80-150 pg·ml-1/OPS and 50-100 dyn·s·cm-5/OPS, respectively. The ratio of NT-pro BNP to OPS (315.00±83.00 pg·ml-1/OPS vs. 115.60±40.50 pg·ml-1/OPS, P=0.000) and PVR to OPS (190.00±57.00 dyn·s·cm-5/OPS vs. 76.40±26.30 dyn·s·cm-5/OPS, P=0.000) for the 6 patients with incosistency between the surgical accessible lesion and high PVR in group B were significantly higher than that for the 81 positive patients in group A. Conclusion Surgically inaccessible CTEPH lesions, CTEPH concomitant with severe diseases, and inconsistency between surgical accessible lesion and high PVR are the three most frequent reasons for denying PTE procedure. The ratio of NTpro BNP to OPS and PVR to OPS may serve as the parameters to define the inconsistency between the surgical accessible lesion and high PVR. Anesthesia test before the PTE procedure may serve as the last evaluation method for the assessment of the operability of CTEPH.
ObjectiveTo describe the effect of sequential pulmonary balloon angioplasty for patients with chronic thromboembolic pulmonary hypertension, who was accompanied with progressed pulmonary hypertension after pulmonary endarterectomy surgeries.MethodsFrom 2014 to December 2017, 7 patients were treated with a combination therapy of pulmonary endarterectomy and sequential pulmonary balloon angioplasty. There were 1 male and 6 females at age of 58 (43–59) years. A follow-up period of more than 1 year was accomplished. The result of right sided heart catheterization and ultrasonic cardiogram between and after the pulmonary endarterectomy or balloon angioplasty was collected.ResultsSeven patients were treated with a combination of pulmonary endarterectomy and sequential pulmonary balloon angioplasty, which included 1 patient of single pulmonary balloon angioplasty and 6 patients of multiple pulmonary balloon angioplasties. The balloon dilation times was 2 (2–6), and the number of segments during each single balloon dilatation was 3–5, compared with the first clinical results before the first balloon dilation, systolic pulmonary artery pressure [53 (47–75) mm Hg vs. 45 (40–54) mm Hg, P=0.042), mean pulmonaryartery pressure [38 (29–47) mm Hg vs. 29 (25–39) mm Hg, P=0.043], N terminal-B type natriuretic peptide [1 872 (1 598–2 898) pg/ml vs. 164 (72–334) pg/ml, P=0.018] improved significantly after the last balloon angioplasty. Heart function classification (NYHA) of all the 7 patients were recovered to Ⅰ-Ⅱclasses (P<0.05).ConclusionSequential pulmonary balloon angioplasty after pulmonary endarterectomy can further reduce the patient's right heart after load, improve the heart function for patients with progressed pulmonary hypertension after pulmonary endarterectomy surgeries.
Objective To discuss the safety and validity of pulmonary endarterectomy (PEA) for chronic thromboembolic pulmonary hypertension (CTEPH) patients with severe right heart failure (RHF). Methods PEA procedures were performed on 36 patients in Fu Wai Hospital from January 2015 to April 2016. There were 28 males and 8 females, with a mean age of 46.56±11.85 years. According to the New York Heart Association (NYHA) cardiac function classification, 36 patients were divided into preoperative severe RHF group (grade Ⅲ-Ⅳ,n=28) and preoperative without severe RHF group (grade Ⅱ,n=8). Hemodynamic parameters before and after PEA were recorded and 3-18 months' follow-up was done. Results All the patients having PEA surgeries had an obvious decrease of mean pulmonary arterial pressure (from 49.53±13.14 mm Hg to 23.58±10.79 mm Hg) and pulmonary vascular resistance (from 788.46±354.60 dyn·s/cm5 to 352.89±363.49 dyn·s/cm5, bothP<0.001). There was no in-hospital mortality among all the patients. Persistent pulmonary hypertension occurred in 2 patients, perfused lung in 2 patients, pericardial effusion in 2 patients. No mortality was found during the follow-up period. All patients improved to NYHA grade Ⅰ-Ⅱ (WHO grade Ⅰ-Ⅱ), and only 2 patients remained in the NYHA grade Ⅲ (P<0.01). Conclusion The CTEPH patients having PEA surgeries had an obvious improvement in both their hemodynamics results and postoperative heart function, which in return could improve their quality of life.
Congenital heart disease refers to the structural or functional abnormality of the macrovascular in the heart or thoracic cavity caused by the failure of the formation of the heart and large blood vessels during the embryonic development or the abnormal closure of the heart or the closure of the channel after birth. In the past few years, a new and broader definition of structural heart disease has been gradually proposed. Structural heart disease narrowly refers to the pathological and physiological changes of the heart caused by abnormal anatomical structures in the heart, including congenital heart disease. A few decades ago, congenital heart disease was considered as a pediatric disease, because most patients with severe lesions rarely survive to adulthood. Due to recent advances in echocardiography, anesthesia, intensive care, percutaneous intervention, especially cardiac surgery in recent decades, the treatment and intervention strategies for congenital heart disease in children have been greatly improved, a fatal defect in childhood can now be successfully repaired or alleviated. Because of these successes, more than 90% of congenital heart disease patients are expected to survive to adulthood, which has led to emerge a new population: adult patients with congenital heart disease. Adult congenital heart disease patients are different from children. Pulmonary hypertension leads to right heart failure and eventually progresses to whole heart failure. The appearance of Eisenmenger syndrome leads to severe cyanosis and worsening of the disease. At present, the continuous development of mechanical assisted circulation support devices and heart or cardiopulmonary transplantation technology has increased the survival rate of end-stage adult congenital heart disease patients with heart failure. The high incidence of cardiovascular events in pregnant patients requires comprehensive multidisciplinary team care and early coordination planning for delivery, including early counseling for pregnancy-related risks, close monitoring of cardiac function and regular scan of fetal assessment. The prenatal and postpartum integrated diagnosis and treatment model and the development of intrauterine treatment technology reduce the incidence of congenital heart disease in adults from the source through fetal intervention. Other complications such as arrhythmia, infective endocarditis, cerebrovascular accidents, and other medical underlying metabolic diseases also challenge future diagnosis and treatment. The incidence and epidemiology of adult congenital heart disease, pulmonary hypertension and end-stage heart failure complications, as well as prenatal and postpartum integrated diagnosis and treatment and intrauterine treatment are summarized in this review.
Objective To investigate the effect of low-flow inhaling NO for short time on postoperative cardiac and pulmonary functions in infants with congenital ventricular septal defect complicated with severe pulmonary hypertension. Methods Forty-five patients with congenital ventricular septal defect complicated with severe pulmonary hypertension from May 2014 to May 2016 in our hospital were enrolled. There were 19 males and 26 females, whose age ranged from 1 to 22 months (average age: 7.2±14.4 months) and weight ranged from 2.7 to 10.5 kg (average weight: 6.8±3.6 kg). The patients were randomly divided into three groups (n=15 in each): the blank group, the prior inhalation group and the posterior inhalation group. The blank group did not inhale NO, and the prior inhalation group inhalated NO for 10 min after tracheal and intubation. After the opening of the aorta, the posterior inhalation group inhaled NO for 10 min. The concentration of NO was 20 × 10–6. The pressure ratio of pulmonary circulation/systematic circulation, heart index and oxygenation index were calculated and the troponin value of the three groups was monitored 10 min after returning to intensive care unit (ICU) and postoperatively 1 h, 3 h and 24 h. Differences among above indicators between three groups were compared. Results The troponin value of the posterior inhalation group within 3 h increased most, followed by the blank group and the prior inhalation group. Postoperatively 1 h and 3 h, the troponin value of the prior inhalation group was significantly less than that of the blank group and posterior inhalation group (P<0.01) and the value on postoperative 24 h in each group was lower than that on postoperative 3 h. The cardiac index of prior inhalation group was higher than that of the blank group and the posterior inhalation group at each time point. Postoperatively 3 h and 24 has well as 10 min after returning to ICU, the cardiac index in prior inhalation group was significantly higher than that of the posterior inhalation group (P<0.05). The pressure ratio of pulmonary circulation/systematic circulation of posterior inhalation group increased more than that of blank group; the differences in two groups were significant between postoperative 3 h and 10 min after returning to ICU (P<0.01). There was no statistical significance in the pressure ratio on postoperative 24 h and 10 min after returning to ICU (P>0.05) in three groups. The index of oxygenation of the prior inhalation group was higher than that of the blank group and the posterior inhalation group and statistically different from that of posterior inhalation group (P<0.05). Conclusion Inhaling NO 10 min preoperatively can reduce the injury to the heart and lung function effectively, but the result is the opposite when inhalating NO 10 min after aorta opening.
Objective To analyze the curative effect of nitric oxide (NO) and bosentan on treatment of the interruption of aortic arch (IAA) with ventricular septal defect (VSD) and serious pulmonary hypertension (SPH). Methods Thirty-two children with IAA and VSD combined SPH from January 2015 to May 2017 confirmed by cardiac CT and ultrasound in Children’s Hospital of Hebei Province were enrolled including 17 males and 15 females, aged 1.10-4.30 months (mean, 2.71±0.98 months) and weighing 3.33-6.10 kg (mean, 4.57±0.88 kg). The 32 children were randomly divided into two groups (n=16 in each), a NO group and a bosentan group. All the patients underwent interruption of aortic arch and ventricular septal defect repair. When patients returned to cardiosurgery intensive care unit (CSICU) half an hour later, patients in the NO group inhaled NO 20 ppm for 36 h and those in the bosentan group were given bosentan by nasogastric feeding 15 mg, twice a day. The cardic index, pulmonary/systemic pressure ratio, oxygenation index at 3 h, 6 h, 12 h, 24 h, 36 h after surgery were evaluated, and the differences between the two groups were compared. Results The pulmonary/systemic pressure ratio in the two groups increased at first and then decreased, while oxygenation index in the two groups decreased at first and then increased, and the differences in the same groups at the adjacent time points were statistically significant (P<0.05). The cardiac index in the two groups decreased at first and then increased, the differences in the same groups at the adjacent time points were statistically significant, except for 6 h and 12 h after surgery in the bosentan group (P>0.05). At postoperative 6 h, 12 h, the oxygenation index in the NO group was significantly higher than that in the bosentan group, and the pulmonary/systemic pressure ratio in the NO group was less than that in the bosentan group (P<0.01). The cardiac index in the NO group was higher than that of the bosentan group after 6 h, 12 h, 24 h of operation, which were statistically significant (P<0.05), and the cardic index of children in the NO group was greatly higher than that in the bosentan group after 12 h of surgery (P<0.01); at the same time point, the corresponding indexes were not statistically significant between the two groups (P>0.05). Conclusion NO inhalation in the treatment of IAA with VSD and SPH in children with early postoperative SPH is better than the bosentan, but in the late postoperative period, the effect is similar.