rough the ultramicroscopic observation on muscle and microcirculation, Group A,where a largeamount of DXM combined with heporin was given svstematically and locally into the femoral artery of the severed limb before replantation, and in Group B only heporin was given, and Group C and D ascontrol.The results showed that if the hormone and heparin were administred in large dosage, it wasadvantageous to reduce the tissues from reperfusion injury during delayed replantation.
Objective To investigate the effect of mesenteric lymphatic duct liagtion and glutamine enteral nutrition on intestine and distant organs in intestinal ischemia/reperfusion injury. Methods Forty male SD rats undergoing gastrostomy were randomly assigned into 5 groups (n=8): sham operation group, normal enteral nutrition group, normal enteral nutrition+lymphatic duct ligation group, glutamine group and glutamine+lymphatic duct ligation group. Sham operation group only received laparotomy after 7 days of full diet, the other four groups were subjected to 60 min of intestinal ischemia after 7 days of enteral nutrition, and the two lymphatic duct ligation groups were plus mesenteric lymphatic duct ligation. The original nutrition continued 3 days after reperfusion. Intestinal permeability was detected on day 1 before reperfusion, day 1 and 3 after reperfusion. Intestinal morphology was observed, endotoxin, D-lactate and diamine oxidase levels in serum, and apoptotic index in lung tissue were detected on day 3 after reperfusion. Results The intestinal permeability in each group was significantly increased on day 1 after reperfusion (Plt;0.05), and which in normal enteral nutrition+lymphatic duct ligation group and glutamine+lymphatic duct ligation group were significantly decreased on day 3 after reperfusion (Plt;0.05). The mucosal thickness and villus height of ileum and mucosal thickness of jejunium in glutamine+lymphatic duct ligation group were significantly higher than those in other groups (Plt;0.05), and villus height of ileum in glutamine group was higher than that in normal enteral nutrition group (Plt;0.05); those morphology indexes in normal enteral nutrition+lymphatic duct ligation group were higher than those in normal enteral nutrition group, but there was no statistical signification (Pgt;0.05). Apoptosis index of lung tissue in lymphatic duct ligation groups was significant lower than that in no-ligation groups (Plt;0.05). Levels of endotoxin, D-lactate, and diamine oxidase in lymphatic duct ligation groups had downward trends compared with no-ligation groups, but there was no statistical signification (Pgt;0.05). Conclusions Intestinal ischemia/reperfusion injury of rats can cause intestinal permeability increase, bacterial endotoxin translocation and systemic inflammatory response. Mesenteric lymphatic duct ligation and glutamine enteral nutrition intervention can weak lung tissue damage, increase thickness of intestinal mucosa, maintain intestinal barrier function, reduce endotoxin translocation and attenuate systemic inflammatory response. Enteral nutrition with glutamine was better than normal enteral nutrition.
Objective To study the efect of IH764-3 on ischemia-reperfusion (I/R) injury in rat liver. Methods Rats were divided into 3 groups, the control group was not subjected to ischemia and no treatment was given. I/R injury group was subjected to 40 minutes ischemia followed by reperfusion for 120 minutes. The IH7643 group (40mg/kg) was administred at ischemia and reperfusion. Results In the IH764-3 group, sereum levels of ALT, AST, AKP and γ-GT were significantly lower than those in the I/R group. Energy charge level recovery was significantly higher with IH7643 (P<0.05), hepatic ultrastructure was better preserved with IH764-3. Conclusion IH764-3 may be useful in the treatment of hepatic ischemia reperfusion injury
【Abstract】 Objective To study the effects of ischemic preconditioning (IP) on the activity of nuclear factor-κB (NF-κB) and the expressions of TNF-α and intercellular adhesion molecule-1 (ICAM-1) during early reperfusion following liver transplantation in rats. Methods The models of rat orthotopic liver transplantation were established. The donor livers were stored for 2 hours in Ringers solution at 4 ℃ before transplantation. All rats were randomly divided into sham operation group (SO group), control group and IP group. IP group was achieved by clamping the portal vein and hepatic artery of donor liver for 10 minutes followed by reperfusion for 10 minutes before harvesting. The activity of NF-κB and expressions of TNF-α and ICAM-1 at 1 h, 2 h, 4 h and 6 h after reperfusion were measured. Serum ALT, LDH were also determined. Results The liver function of recipients with IP were significantly improved. Compared with SO group, the graft NF-κB activity increased after transplantation in control group and IP group (P<0.05), while compared with control group that was significantly attenuated at 1 h and 2 h in IP group. Similarly, hepatic levels of TNF-α and ICAM-1 were significantly elevated in control group and were reduced in IP group. Conclusion IP might down-regulated TNF-α and ICAM-1 expression in the grafts after orthotopic liver transplantation through depressed NF-κB activation, and attenuate neutrophil infiltration in the grafts after reperfusion.
Objective To investigate the effect of S-adenosylmethionine (SAM) on mitochondrial injury that was induced by ischemia-reperfusion in rat liver. Methods Fifty-four rats were randomly divided equally into 3 groups: control group, ischemia-reperfusion group (I/R group), and SAM-treated group (SAM group). Hepatic ischemia had been only lasted for 30 min by obstructing the blood stream of hepatic portal vena (the portal vena was only separated but not obstructed in control group). The rats of SAM group received SAM intraperitoneally 2 h prior to ischemia. Blood samples of each group were collected from the inferior cava vena at 0, 1 and 6 h after reperfusion and the serum levels of AST and ALT were detected. Mitochondrial super oxidedismutase (SOD), malondialdehyde (MDA), adenosine triphosphate (ATP) and energy charge (EC) in samples of liver tissue were detected, and the mitochondrial ultrastructure was observed with electronmicroscope. Results The serum levels of AST, ALT and mitochondrial MDA at 0, 1 and 6 h after reperfusion in the I/R group were significantly higher than those in the control group, whereas the levels of mitochondrial SOD, ATP and EC were significantly lower than those in the control group (P<0.01). Except the value of 0 h, when it comes to SAM group, the levels of AST, ALT and mitochondrial MDA were significantly lower (P<0.05) and the levels of mitochondrial SOD, ATP and EC were significantly higher (P<0.05, P<0.01) than those in the I/R group, respectively. The mitochondrial ultrastructure was injured obviously in I/R group when compared with that in control group. The number of mitochondria decreased and the mitochondria swelled, making the crista became obscure and the density of matrix became lower. The above changes in SAM group were less obvious when compared with those in I/R group. Conclusion SAM may protect mitochondrion against hepatic ischemia injury, since it may prevent mitochondrial lipid peroxidation, increase ATP, and eventually improve energy metabolism after ischemia-reperfusion.
Abstract: Objective To summarize the method and effective result of thoracoscopic intrapleural perfusion hyperthermochemotherapy(TIPHC) for treating malignant pleural effusion caused by lung cancer. Methods Fiftyeight patients with malignant pleural effusion caused by lung cancer were randomly divided into therapeutic group(30 cases) and control group(28 cases) between February 1999 and March 2005. Pleural biopsy and TIPHC under general ansthesia with unilateral ventilation were performed in the therapeutic group, and intrapleural injection of cisplatin was administered in control group after drainage of pleural effusion. The effect on malignant pleural effusion, the change for the concentration of carcinoembryonic antigen(CEA), cytokeratin-19 fragments (CYFRA21-1), neuronspecific enolase (NSE) and the side effect were compared before and after the treatment. Results The therapeutic group achieved total response rate of 100.0%, but only 53.6% in control group, with significant difference(χ 2=3.863, Plt;0.05). Furthermore, the concentration of CEA, CYFRA21-1, NSE in therapeutic group dramatically descended than control group(t=2.562,Plt;0.05). But there was no significant difference in side effect (Pgt;0.05). The pathological diagnosis of all the patients were determined in the therapeutic group. Conclusion TIPHC has the advantage of both diagnosis and treatment of malignant pleural effusions. It is safe and effective, and also able to determine the diagnosis. Furthermore, it offers the superiority of small wound, best visualization and convenient pleural biopsy.
ObjectiveTo summarize recent researches on mechanism of the hepatic ischemic preconditioning (IPC) and its clinical applications on hepatectomy and liver transplantation. MethodsRelevant references about basic and clinical researches of hepatic IPC were collected and reviewed. ResultsRecent experimental researches indicated that IPC could relieve hepatic ischemiareperfusion injury (IRI) by remaining and improving energy metabolism of liver, regulating microcirculation disorder, decreasing the production of lipid peroxidation and oxyradical. It could also inhibit the activation of inflammatory cells and the release of cytokine, suppress cell apoptosis and induce the release of endogenous protective substance. Till now, most of the clinical researches had confirmed the protective function of hepatic IPC, but there were still some references with opposite opinions. ConclusionHepatic IPC could relieve liver IRI, but its clinical application value on hepatectomy and liver transplantation still need more researches to prove.
ObjectiveTo explore performances of functional magnetic resonance imaging (MRI) in evaluation of hepatic warm ischemia-reperfusion injury.MethodThe relative references about the principle of functional MRI and its application in the assessment of hepatic warm ischemia-reperfusion injury were reviewed and summarized.ResultsThe main functional MRI techniques for the assessment of hepatic warm ischemia-reperfusion injury included the diffusion weighted imaging (DWI), intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), blood oxygen level dependent (BOLD), dynamic contrast enhancement MRI (DCE-MRI), and T2 mapping, etc.. These techniques mainly used in the animal model with hepatic warm ischemia-reperfusion injury currently.ConclusionsFrom current results of researches of animal models, functional MRI is a non-invasive tool to accurately and quantitatively evaluate microscopic information changes of liver tissue in vivo. It can provide a useful information on further understanding of mechanism and prognosis of hepatic warm ischemia-reperfusion injury. With development of donation after cardiac death, functional MRI will play a more important role in evaluation of hepatic warm ischemia-reperfusion injury.
Objective To summarize the mechanism and research progress of Kruppel-like factor 2 (KLF2) in various liver diseases and related drug development, providing theoretical basis for further mechanism exploration and clinical application. Method The literatures on the mechanism of KLF2 in liver diseases at home and abroad were collected and summarized. Results KLF2 was widely distributed and had various functions in human body, mainly regulating the growth, differentiation and function of endothelial cells, inhibiting pro-inflammatory and pro-thrombotic gene expression, and participating in important physiological processes such as liver inflammation, oxidative stress and thrombosis, and affecting the occurrence and development of various liver diseases. The regulation of KLF2 expression by statins had been widely used in the treatment of liver diseases. Conclusion KLF2 regulates the expression of related molecules through a variety of pathways and affects the functions of various cells in the liver, which is the focus of research on improving liver injury.
This prospective animal study was designed to investigate the changes of plasma endothelin (ET) levels in acute necrotizing pancreatitis (ANP). Sprague-Dawley rats were randomly devided into 3 groups: acute necrotizing pancreatitis (ANP) group in which ANP was induced by infusion of 5% sodium taurocholate (STC) into biliopancreatic duct, sham operation (SO) group and platelet activating factor antagonist BN50739 (BN) group. Blood levels of ET and platelet activating factor (PAF) were detected. Pancreatic microcirculatory blood flow was measured and pancreatic histological scores were evaluated. Results showed that the pancreatic microcirculatory blood flow in ANP group was decreased to a great extent immediatly after induction of ANP and soon began to rise slowly for 3 hours and again decreased steadily after that. The blood levels of ET, PAF and histological scores in ANP group were significantly higher than those in SO group. In BN group, the blood flow was significantly improved and the levels of blood ET, PAF and histological scores were all significantly lower as compared to those in ANP group. It is concluded that ischemia/ reperfusion is present in the initiation of acute necrotizing pancreatitis induced by STC in the rat. This leads to injuries of endothelial cells and increase in the production of ET and PAF. I/R lesions,and interaction of ET and PAF lead to a vicious circle, thus augmenting the pathological changes in the pancreas.