west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "one marrow mesenchymal stem cells" 157 results
  • EFFECT OF ENDOTHELIAL PROGENITOR CELLS IN PROMOTING OSTEOGENESIS OF TISSUE ENGINEERED BONE IN VIVO

    ObjectiveTo investigate the ability of autologous peripheral blood endothelial progenitor cells (EPCs) in promoting neovascularization of tissue engineered bone and osteogenesis of bone marrow mesenchymal stem cells (BMSCs). MethodThe peripheral blood EPCs and BMSCs from No. 1-9 New Zealand rabbits were isolated, cultured, and identified. According to the cell types, the third generation of cells were divided into 3 groups:EPCs (group A), BMSCs (group B), and co-cultured cells of EPCs and BMSCs (group C, EPCs:BMSCs=1:2) . Then cells were seeded on the partially deproteinised bone (PDPB) packaged with fibronectin to construct tissue engineered bone. After 4 days, autologous heterotopic transplantation of tissue engineered bone was performed in the rabbit's muscles bag of groups A, B, and C (the right arm, left arm, right lower limb respectively, 2 pieces each part). At 2, 4, and 8 weeks after transplantation, the growth of tissue engineered bone was observed, and the rate of bone ingrowth was calculated by HE staining; the expressions of CD34, CD105, and zonula occludens protein 1(ZO-1) were compared by immunohistochemical staining at each time point in tissue engineered bone among 3 groups. ResultsThe EPCs and BMSCs were isolated and identified successfully; immunofluorescent staining showed that EPCs were positive for CD34, CD133, and von Willebrand factor (vWF), and BMSCs were positive for CD29 and CD90 and were negative for CD34. The tissue engineered bone constructed in 3 groups was transplanted successfully. At 2, 4, and 8 weeks after autologous heterotopic transplantation, the general observations showed that the soft tissue around the tissue engineered bone increased and thickened gradually in each group with time passing; the boundary between bone and soft tissue was not clear; the pore space of tissue engineered bone gradually was filled, especially in group C, the circuitous vascular network could be seen in the tissue engineered bone. HE staining showed capillaries and collagen fibers increased gradually, tissue engineered bone ingrowth rate was significantly higher in group C than groups A and B at 4 and 8 weeks (P<0.05) , and group B was significantly higher than group A (P<0.05) . Immunohistochemical staining showed that the expressions of CD34, CD105, and ZO-1 in tissue engineered bone of 3 groups all increased with the extension of time, showing significant differences between groups at each time point (P<0.05) . At 2 weeks after transplantation, the expression of CD105 in group C was significantly higher than that in groups A and B (P<0.05) ; at 4 and 8 weeks, CD34, CD105, and ZO-1 expressions showed significant differences between 2 groups (P<0.05) ; the expression was the highest in group C, and was the lowest in group B. ConclusionsAutologous peripheral blood EPCs and BMSCs have synergistic effect, and can promote neovascularization and osteogenesis of tissue engineered bone in vivo.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL COMPARATIVE STUDY ON OSTEOGENIC ACTIVITY BETWEEN FREEZE-DRIED TISSUE ENGINEERED BONE AND TISSUE ENGINEERED BONE

    Objective Tissue engineered bone (TEB) lacks of an effective and feasible method of storage and transportation. To evaluate the activity of osteogenesis and capabil ity of ectopic osteogenesis for TEB after freeze-dried treatment in vitro and in vivo and to explore a new method of preserving and transporting TEB. Methods Human bone marrow mesenchymal stem cells (hBMSCs) and decalcified bone matrix (DBM) were harvested from bone marrow and bone tissue of the healthy donators. TEB was fabricated with the 3rd passage hBMSCs and DBM, and they were frozen and dried at extremely low temperatures after 3, 5, 7, 9, 12, and 15 days of culture in vitro to obtain freeze-dried tissue engineered bone (FTEB). TEB and FTEB were observed by gross view and scanning electron microscope (SEM). Western blot was used to detect the changes of relative osteogenic cytokines, including bone morphogenetic protein 2 (BMP-2), transforming growth factor β1 (TGF-β1), and insul in-l ike growth factor 1 (IGF-1) between TEB and FTEB. The ectopic osteogenesis was evaluated by the methods of X-ray, CT score, and HE staining after TEB and FTEB were transplanted into hypodermatic space in athymic mouse. Results SEM showed that the cells had normal shape in TEB, and secretion of extracellular matrix increased with culture time; in FTEB, seeding cells were killed by the freeze-dried process, and considerable extracellular matrix were formed in the pore of DBM scaffold. The osteogenic cytokines (BMP-2, TGF-β1, and IGF-1) in TEB were not decreased after freeze-dried procedure, showing no significant difference between TEB and FTEB (P gt; 0.05) except TGF-β1 15 days after culture (P lt; 0.05). The ectopic osteogenesis was observed in TEB and FTEB groups 8 and 12 weeks after transplantation, there was no significant difference in the calcified level of grafts between TEB and FTEB groups by the analysis of X-ray and CT score. On the contrary, there was no ectopic osteogenesis in group DBM 12 weeks after operation. HE staining showed that DBM scaffold degraded and disappeared 12 weeks after operation. Conclusion The osteogenic activity of TEB and FTEB is similar, which provides a new strategy to preserve and transport TEB.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • EFFECT OF HUMAN HEPATOCYTE GROWTH FACTOR GENE-MODIFIED BONE MARROW MESENCHYMAL STEM CELLS ON IMMUNOLOGICAL REJECTION AFTER ALLOGRAFT LIVER TRANSPLANTATION IN RATS

    Objective To study the effect of recombinant lentiviral vector mediated human hepatocyte growth factor (hHGF) gene-modified bone marrow mesenchymal stem cells (BMSCs) on the immunological rejection after allograft l iver transplantation in rats, and to reveal the mechanism of immune tolerance. Methods Eight male Sprague Dawley (SD)rats of clean grade (aged 3 to 4 weeks, weighing 75-85 g) were selected for the isolation and culture of BMSCs; 64 adult male SD rats of clean grade (weighing 200-250 g) were used as donors; and 64 adult male Wistar rats of clean grade (weighing 230-280 g) were used as receptors. After establ ishing a stable model of rat allogeneic l iver transplantation, 1 mL sal ine, 2 ×106/mL of BMSCs 1 mL, 2 × 106/mL of BMSCs/green fluorescent protein 1 mL, and 2 × 106/mL of BMSCs/hHGF 1 mL were injected via the portal vein in groups A, B, C, and D respectively. Then the survival time of the rats was observed. The hepatic function was determined and the histological observation of the l iver was performed. The hHGF mRNA expression was detected by RT-PCR, the level of cytokine including hHGF, interleukin 2 (IL-2), IL-4, IL-10, and interferon γ (IFN-γ) by ELISA assay, the level of apoptosis by TUNEL method, and the expression level of prol iferating cell nuclear antigen (PCNA) by immunohistochemical method. Results The survival time of group D was significantly higher than that of groups A, B, and C (P lt; 0.01); the survival time of groups B and C was significantly higher than that of group A (P lt; 0.01), but there was no significant difference between group B and group C (P gt; 0.05). RT-PCR demonstrated the transcription of hHGF mRNA in the grafts of group D; the serum cytokine hHGF reached to (6.2 ± 1.0) ng/mL. Compared with groups B and C, group D exhibited significant inhibitory effect, significantly improved l iver function, and showed mild acute rejection. In addition, the levels of cytokine IL-2 and IFN-γ decreased; the levels of cytokine IL-4 and IL-10 increased; the level of apoptosis reduced; and the expression level of PCNA increased. Except for the expression of IL-4 (P gt; 0.05), there were significant differences in the other indexes between group D and groups B, C (P lt; 0.05). Conclusion BMSCs/hHGF implanting to rat l iver allograft via portal vein can induce immune tolerance. Compared with injection of BMSCs alone, BMSCs/hHGF treatment can alleviate acute rejection and prolong the survival time significantly. The immunosuppressive effect of BMSCs/hHGF is correlated with Th2 shifts up of Th1/Th2 shift, reduced apoptosis, promoted l iver regeneration.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
  • TRANSPLANTATION OF BONE MARROW MESENCHYMAL STEM CELLS INTO SPINAL CORD INJURY : A OMPARISON OF DELIVERY DIFFERENT TIMES

    Objective To investigate the influence of different transplantating times on the survival and immigration of the bone marrow mesenchymal stem cells (BMSCs) in injured spinal cord by subarachnoid administration, and to evaluate the most optimal subarachnoid administration times for BMSCs. Methods Eight adult male rats (weighing 120 g) were used to isolate BMSCs that were cultured, purified and labeled with Hoechst 33342 in vitro. Another 75 adult Wistar rats (weighing 220 g) were made the spinal cord injury (SCI) models at T9,10 level according to the improved Allen’s method and were randomly divided into 5 groups (groups A, B, C, D, and E, n=15). The labeled BMSCs at 1 × 107/mL 0.1 mL were injected into subarachnoid space of the rats via a catheters under the subarachnoid space in groups A (one time at 1 week), B ( two times at 1 and 3 weeks), C (3 times at 1, 3, and 5 weeks) and D (5 times at 1, 3, 5, 7, and 9 weeks) and 0.2 mL phosphate-buffered sal ine (PBS) was injected in group E (5 times at 1, 3, 5, 7, and 9 weeks) as blank control. The neurological functions were evaluated using the Basso-Beattie-Bresnahan (BBB) scale 1, 3, 5, 7, 9, and 12 weeks after transplantation. The migration, survival, differentiation, and histomorphological changes of BMSCs were observed by HE, immunohistochemistry, and fluorescence microscopy.  Results  At 3 weeks after injury, there were significant differences in the BBB scores between group E and groups A, B, C, D (P lt; 0.01), and between groups A, B and groups C, D (P lt; 0.01). At 7, 9, and 12 weeks, the BBB scores were significantly higher in groups C and D than in groups A and B (P lt; 0.01), and in group B than in group A (P lt; 0.01). There were no significant differences in the BBB scores between groups C and D (P gt; 0.05). The fluorescence microscopy showed that the transplanted BMSCs survived and grew in the injured region at 3 weeks after injury and as time went on, the transplanted cells gradually decreased in group A; in groups B, C, and D, BMSCs count reached the peak values at 5 and 7 weeks and then gradually decreased. At 12 weeks, the survival BMSCs were significantly more in groups C and D than in groups A and B (P lt; 0.01). HE staining showed that the formation of cavity was observed in each group at 3 weeks after injury and the area of cavity gradually decreased in groups A, B, C, and D. At 12 weeks, the area of cavity was the miximal in groups C and D, moderate in groups A and B, and the maximal in group E. The immunohistochemistry staining indicated that the expression of NF-200 was more intense in groups C and D than in groups A and B. The expression of NF-200-positive fibers was more intense in group C. Conclusion Multiple administration of BMSCs promotes the restoration of injured spinal cord and improves neurological functions, and three times for BMSCs transplantation is best

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • REGULATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS OSTEOGENIC AND ADIPOGENIC DIFFERENTIATIONS BY Wnt10b ADENOVIRAL VECTOR IN VITRO

    ObjectiveTo investigate the regulation of human bone marrow mesenchymal stem cells (hBMSCs) osteogenic and adipogenic differentiations mediated by Wnt10b adenoviral vector in vitro. MethodsThe hBMSCs from ilial bone tissue in adults at passage 4 were infected by Wnt10b gene expression adenoviral vector (group A), Wnt10b-shRNA adenoviral vector (group B), and empty vector (group C), and non-transfected hBMSCs served as the blank control group. Then the cells were cultured separately in the circumstance of osteogenic induction, adipogenic induction, and non-induction. The alkaline phosphatase (ALP) staining, alizarin red staining, and oil red O staining were used to detect the osteogenic and adipogenic differentiations; real-time fluorescent quantitative PCR and Western blot were used to analyze the expressions of osteoblast and adipocyte genes and proteins. ResultsThe results of ALP staining were positive after osteogenic induction, group A showed strong staining, and group B showed the weakest staining. The results of alizarin red staining showed that there were a lot of patchy confluent brown mineralized nodules in group A; a few punctate brown mineralized nodules were seen in group B; and many punctuate brown mineralized nodules were found in groups C and D. The results of oil red O staining showed strong staining in groups B, C, and D after adipogenic induction, especially in group B; scattered or small clustered staining was observed in group A. The expressions of osteoblast genes and proteins were significantly higher in group A than groups B, C, and D, and in groups C and D than group B by real-time fluorescent quantitative PCR and Western blot test; however, the expressions of adipocyte genes and proteins showed a contrary tendency. ConclusionThe high level expression of Wnt10b can enhance osteogenic differentiation of hBMSCs, and the low level expression of Wnt10b can increase adipogenic differentiation of hBMSCs.

    Release date: Export PDF Favorites Scan
  • STUDY ON GENE TRANSFECTION IN BONE MARROW MESENCHYMAL STEM CELLS MEDIATED BY PLASMID OF BONE MORPHOGENETIC PROTEIN 2 LOADED LIPOPOLYSACCHARIDE-AMINE NANOPOLYMERSOMES

    ObjectiveTo evaluate the combination of lipopolysaccharide-amine nanopolymersomes (LNPs), as a gene vector, with target gene and the transfection in bone marrow mesenchymal stem cells (BMSCs) so as to provide a preliminary experiment basis for combination treatment of bone defect with gene therapy mediated by LNPs and stem cells. MethodsPlasmid of bone morphogenetic protein 2 (pBMP-2)-loaded LNPs (pLNPs) were prepared. The binding ability of pLNPs to pBMP-2 was evaluated by a gel retardation experiment with different ratios of nitrogen to phosphorus elements (N/P). The morphology of pLNPs (N/P=60) was observed under transmission electron microscope (TEM) and atomic force microscope (AFM). The size and Zeta potential were measured by dynamic light scattering (DLS). The resistance of pLNPs against DNase I degradation over time was explored. The viability of BMSCs, transfection efficiency, and expression of target protein were investigated after transfection by pLNPs in vitro. ResultsAt N/P≥1.5, pLNPs could completely retard pBMP-2; at N/P of 60, pLNPs was uniform vesicular shape under AFM; TEM observation demonstrated that pLNPs were spherical nano-vesicles with the diameter of (72.07±11.03) nm, DLS observation showed that the size of pLNPs was (123±6) nm and Zeta potential was 20 mV; pLNPs could completely resist DNase I degradation within 4 hours, and such protection capacity to pBMP-2 decreased slightly at 6 hours. The cell survival rate first increased and then decreased with the increase of N/P, and reached the maximum value at N/P of 45; the cytotoxicity was in grade I at N/P≤90, which meant no toxicity for in vivo experiment. While the transfection efficiency of pLNPs increased with the increase of N/P, and reached the maximum value at N/P of 60. So it is comprehensively determined that the best N/P was 60. At 4 days, transfected BMSCs expressed BMP-2 continuously at a relatively high level at N/P of 60. ConclusionLNPs can compress pBMP-2 effectively to form the nanovesicles complex, which protects the target gene against enzymolysis. LNPs has higher transfection efficiency and produces more amount of protein than polyethylenimine 25k and Lipofectamine 2000.

    Release date: Export PDF Favorites Scan
  • Effect of Wnt/β-catenin signaling pathway in neural differentiation of human bone marrow mesenchymal stem cells

    Objective To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process. MethodsThe identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot. ResultsWhen compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A (P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D (P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased (P<0.05), while NSE, MAP-2, and GFAP genes significantly increased (P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E (P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E (P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E (P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E (P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E (P<0.05). Conclusion Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.

    Release date:2023-10-11 10:17 Export PDF Favorites Scan
  • Effect of bone morphogenetic protein 7/poly (lactide-co-glycolide) microspheres on the in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells

    ObjectiveTo evaluate the effect of bone morphogenetic protein 7 (BMP-7)/poly (lactide-co-glycolide) (PLGA) microspheres on in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs).MethodsBMP-7/PLGA microspheres were fabricated by double emulsion-drying in liquid method. After mixing BMP-7/PLGA microspheres with the chondrogenic differentiation medium, the supernatant was collected on the 1st, 3rd, 7th, 14th, and 21st day as the releasing solution. The BMSCs were isolated from the bilateral femurs and tibias of 3-5 days old New Zealand rabbits, and the 3rd generation BMSCs were divided into 2 groups: microspheres group and control group. The BMSCs in microspheres group were cultured by 200 μL BMP-7/PLGA microspheres releasing solution in the process of changing liquid every 2-3 days, while in control group were cultured by chondrogenic medium. The cell proliferation (by MTT assay) and the glycosaminoglycan (GAG) contents (by Alician blue staining) were detected after chondrogenic cultured for 1, 3, 7, 14, and 21 days. The chondrogenic differentiation of BMSCs was observed by safranine O staining, toluidine blue staining, and collagen type Ⅱ immunohistochemistry staining at 21 days.ResultsMTT test showed that BMSCs proliferated rapidly in 2 groups at 1, 3, and 7 days; after 7 days, the proliferation of BMSCs in the control group was slow and the BMSCs in microspheres group continued to proliferate rapidly. There was no significant difference of the absorbance (A) value at 1, 3, and 7 days between 2 groups (P>0.05), but theA value at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05). Compared with control group at 21 days, in microsphere group, almost all nuclei were dyed bright red by safranine O staining, almost all the nuclei appeared metachromatic purple red by toluidine blue staining, and the most nuclei were yellow or brown by immunohistochemical staining of collagen type Ⅱ. Alcian blue staining showed that the content of GAG in 2 groups increased continuously at different time points; after 7 days, the increasing trend of the control group was slow and the microspheres group continued hypersecretion. There was no significant difference of the GAG content at 1, 3, and 7 days between 2 groups (P>0.05), but the GAG content at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05).ConclusionBMP-7/PLGA microspheres prepared by double emulsion-drying in liquid method in vitro can promote proliferation and chondrogenic differentiation of rabbit BMSCs.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
  • EFFECT OF GROWTH DIFFERENTIATION FACTOR 7 ON TENOGENIC DIFFERENTIATION OF BONE MARROW MESENCHYMAL STEM CELLS OF RAT IN VITRO

    Objective To investigate the effect of growth differentiation factor 7 (GDF-7) on the tenogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro, to provide evidence for improving the efficacy of BMSCs on tendon repair. Methods BMSCs were isolated from bone marrow tissue of green fluorescent protein rats by density gradient centrifugation method. Chondrogenic, osteogenic, and adipogenic differentiation assays were used to demonstrate the multi-differentiation potential of the BMSCs. BMSCs at passage 3 were cultured and divided into 4 groups according to different concentrations of GDF-7 (0, 12.5, 25.0, and 50.0 ng/mL): group A, B, C, and D, respectively. After cultured for 2 weeks in vitro, the mRNA expressions of scleraxis, tenomodulin, tenascin C, and collagen type I were detected by real-time fluorescent quantitative PCR method, the protein expressions of tenomodulin, tenascin C, and collagen type I by immunocytochemistry staining in 4 groups, and the protein expressions of tenomodulin by Western blot in groups A and C. Results BMSCs had osteogenic, chondrogenic, and adipogenic differentiation potentials. The mRNA expressions of tenomodulin in groups B, C, and D were 2.85, 3.41, and 3.07 times higher than that in group A, respectively; the mRNA expressions of scleraxis in groups B, C, and D were 2.13, 1.50, and 2.56 times higher than that in group A, respectively; and the mRNA expressions of tenascin C in groups B, C, and D were 2.45, 2.86, and 1.88 times higher than that in group A, respectively. There were significant differences between groups B, C, D and group A (P lt; 0.05), while there was no significant difference among groups B, C, and D (P gt; 0.05). The mRNA expressions of collagen type I in groups B and C were 1.92 and 2.45 times higher than that in group A, showing significant differences between groups B, C and group A (P lt; 0.05), but no significant difference between groups A and D (P gt; 0.05). Immunocytochemistry staining showed that the protein expressions of tenomodulin, tenascin C, and collagen type I were detected in groups B, C, and D but not in group A. The results were further confirmed by Western blot results which showed higher protein expression of tenomodulin in group C than in group A. Conclusion GDF-7 can be used to promote tenogenic differentiation of rat BMSCs in vitro.

    Release date:2016-08-31 05:45 Export PDF Favorites Scan
  • EFFETS OF CHONDROITINASE ABC COMBINED WITH BONE MARROW MESENCHYMAL STEM CELLS TRANSPLANTATION ON REPAIR OF SPINAL CORD INJURY IN RATS

    Objective To investigate the effects of chondroitinase ABC (ChABC) combined with bone marrow mesenchymal stem cells (BMSCs) in repair spinal cord injury of rats. Methods Primary BMSCs were isolated and cultured from the femur and tibia of neonatal Sprague Dawley (SD) rats. The spinal cord injury model was established in 24 adult SD male rats (weighing, 200-230 g), which were randomly divided into control group (group A), BMSCs transplantation group (group B), ChABC injection group (group C), and ChABC and BMSCs transplantation group (group D), 6 rats in each group. At 7 and 14 days after injury, Basso-Beattie-Bresnahan (BBB) score criteria was used to evaluate the hindlimb motor function; at 14 days after injury, the injured spinal cord tissue was perfused and stained by HE for further calculation of the injury area. Immunofluorescence staining were used for observing the expressions of glial fibrillary acidic protein (GFAP)/chondroitin sulfate proteoglycan (CSPG) and GFAP/growth associated protein 43 (GAP43). Results At 7 days after injury, three joints movement of the hindlimbs were recovered in all groups, and no significant difference in the BBB score was found among 4 groups (P gt; 0.05). At 14 days after injury, no load drag was observed in 3 joints of the hindlimbs in groups A, B, and C, but weight-bearing plantar or occasional dorsalis pedis weight-bearing walking was observed in group D with no plantar walking. The BBB score of group D was significantly higher than that of the other 3 groups (P lt; 0.05). HE staining showed that the cavity formed in the damage zone, and there were a large number of macrophages in the cavity and its surrounding, which was wrapped by scar tissue. The damage area of group D was significantly smaller than that of the other 3 groups (P lt; 0.05). At 14 days after injury, the GFAP/CSPG double immunofluorescence staining showed that the astroglial scar damage zone in group D was significantly reduced, and no cavity formation was found. And the fluorescence intensity in groups C and D was significantly lower than that in group B (P lt; 0.05). The GFAP/GAP43 double immunofluorescence staining showed that GAP43-positive fibers passed through the damage zone in group D and the fluorescence intensity in group D was significantly higher than those in groups B and C (P lt; 0.05). Conclusion Inhibition of astrocytes secreting CSPG by ChABC combined with BMSCs transplantation in early injury may promote the regeneration of nerve fibers, and repair spinal cord injury in rats.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
16 pages Previous 1 2 3 ... 16 Next

Format

Content