west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "neuron" 45 results
  • RESCUE OF MOTONEURON FROM BRACHIAL PLEXUS NERVE ROOT AVULSION INDUCED CELL DEATH BY SCHWANN CELL DERIVED NEUROTROPHIC FACTOR

    OBJECTIVE To study the protective effects of Schwann cell derived neurotrophic factor (SDNF) on motoneurons of spinal anterior horn from spinal root avulsion induced cell death. METHODS Twenty SD rats were made the animal model of C6.7 spinal root avulsion induced motoneuron degeneration, and SDNF was applied at the lesion site of spinal cord once a week. After three weeks, the C6.7 spinal region was dissected out for motoneuron count, morphological analysis and nitric oxide synthase (NOS) enzyme histochemistry. RESULTS 68.6% motoneurons of spinal anterior horn death were occurred after 3 weeks following surgery, the size of survivors was significantly atrophy and NOS positive neurons increased. However, in animals which received SDNF treatment, the death of motoneurons was significantly decreased, the atrophy of surviving motoneurons was prevented, and expression of NOS was inhibited. CONCLUSION SDNF can prevent the death of motoneurons following spinal root avulsion. Nitric oxide may play a role in these injury induced motoneuron death.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • A review of brain-like spiking neural network and its neuromorphic chip research

    Under the current situation of the rapid development of brain-like artificial intelligence and the increasingly complex electromagnetic environment, the most bionic and anti-interference spiking neural network has shown great potential in computing speed, real-time information processing, and spatiotemporal data processing. Spiking neural network is the core part of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure of biological neural network and the way of information transmission. This article first summarizes the advantages and disadvantages of the five models, and analyzes the characteristics of several network topologies. Then, it summarizes the spiking neural network algorithms. The unsupervised learning based on spike timing dependent plasticity (STDP) rules and four types of supervised learning algorithms are analyzed. Finally, the research on brain-like neuromorphic chips at home and abroad are reviewed. This paper aims to provide learning ideas and research directions for new colleagues in the field of spiking neural network.

    Release date:2021-12-24 04:01 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON SCHWANN CELLS CYTOPLASMIC NEUROTROPHIC PROTEINS TO IMPROVE THE REGENERATION OF THE INJURED PERIPHERAL NERVE IN VIVO

    OBJECTIVE: To study the effects of Schwann cell cytoplasmic derived neurotrophic proteins (SDNF) on the regeneration of peripheral nerve in vivo. METHODS: Ninety adult SD rats were chosen as the experimental model of degenerated muscle graft with vascular implantation bridging the 10 mm length of right sciatic nerve. They were divided randomly into three groups, 30 SD rats in each groups. 25 microliters of 26 ku SDNF (50 micrograms/ml, group A), 58 ku SDNF (50 micrograms/ml, group B) and normal saline(group C) were injected respectively into the proximal, middle and distal part of the degenerated muscle grafts at operation, 7 and 14 days postoperatively. The motorial function recovery assessment was carried out every 15 days with the sciatic nerve function index(SFI) after 15 days to 6 months of operation. Histological and electrophysiological examination of regenerating nerve were made at 1, 3 and 6 months postoperatively. RESULTS: There were significant statistic differences between the both of experimental groups(group A and B) and control group(group C) in the respects of the histological, electrophysiological examination and SFI(P lt; 0.01). CONCLUSION: The 26 ku SDNF and 58 ku SNDF can improve the regeneration of the injured peripheral nerve in vivo.

    Release date:2016-09-01 10:28 Export PDF Favorites Scan
  • RECONSTRUCTION OF LOWER EXTREMITY FUNCTION OF COMPLETE SPINAL CORD INJURY RATS BY FIRST NEURON CONNECTION

    ObjectiveTo investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. MethodsForty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L1 transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n=20) and experimental group (n=20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. ResultsAfter establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P>0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. ConclusionDirect reconstruction of the first neurons is sufficient in the regeneration of corresponding neural circuit by the growth of residual axon; but the motor function recovery of the target muscles innervated by peripheral nerve is not observed.

    Release date: Export PDF Favorites Scan
  • Experimental study of urinary center change in pons after conus medullaris injury in rats

    Objective To observe the structural changes of urinary center and the expression of Bcl-2 after conus medullaris injury in rats brain so as to explore the possible influence factors of degeneration in brain. Methods Thirty-six adult Sprague-Dawley rats were randomly divided into experimental group (n=30) and control group (n=6). In the experimental group, the conus medullaris injury model was established by cutting off the spinal nerve below L4, and no treatment was done in the control group. The modeling operations in the experimental group were successful, and 2 rats died at 3 months and 5 months after modeling operation respectively, which may be caused by renal failure or urinary tract infection. In the experimental group, 6, 6, 6, 5, and 5 rats were killed at 1 day, 1 week, and 1, 3, 6 months after operation respectively, and 1 rat was killed at each time point in the control group. The dorsolateral tissue of the pontine tegmentum was harvested to perform HE staining and Bcl-2 immunohistochemical SP staining. Results HE staining showed that there was no obvious difference between the experimental group and the control group at 1 day after operation, the neurons were densely packed, arranged neatly, and the nucleoli were clear; at 1 week, the space between the neurons in the experimental group were slightly widened; at 1 month, nucleus retraction in some neurons happened in the experimental group; at 3 and 6 months, the nuclei in the experimental group were more and more condensed, and even some cells disappeared. Bcl-2 immunohistochemical SP staining showed that the expression of Bcl-2 in the control group was weakly positive. The positive expression of Bcl-2 was found at 1 day after operation in the experimental group; the positive expression of Bcl-2 at 7 days after operation was significantly higher than that in the control group, and reached the peak; the positive expression of Bcl-2 decreased gradually at 1, 3, and 6 months after modeling operation, but it was still higher than that of the control group. Conclusion The urinary center appears structure degeneration and necrocytosis after conus medullaris injury in rats brain. The elevated expression of Bcl-2 may be associated with brain tissue repair and function remodeling.

    Release date:2018-01-09 11:23 Export PDF Favorites Scan
  • Research on Regulation Function ofγ-Secretase Inhibitor DAPT on the Differentiation of Neural Precursor Cell Line

    This study aims to investigate the effect ofγ-Secretase Inhibitor DAPT, (N-[N-(3, 5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester), on the differentiation of neural precursor cells and the production of neurons in the neural precursor cell line GE6. GE6 was cultured in medium with 4μmol/L DAPT added as the experimental group and the untreated medium separately as the control group. After 4 days of differentiation, we carried out the following experiments. We used immuno-fluorescent staining to observe the ratio of Tuj1, GFAP and O4 positive cells. We also used qRT-PCR to detect the effect of the DAPT on Tuj1 and GFAP mRNA transcription in the GE6. The results of immuno-fluorescent staining indicated that the Tuj1 ratio of experimental group was higher compared to that of the control group, but the GFAP and O4 ratio of experimental group was lower than that of the control group. The differences were statistically significant (P < 0.05). The result of qRT-PCR was in accordance with immunofluorescent staining results. It was well concluded that DAPT could promote the neurogenic differentiation of neural precursor cell line rather than leading to gliogenic differentiation. More neurons could be obtained for transplantation with the addition of DAPT.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • Abnormal RNA translation and amyotrophic lateral sclerosis

    The translation and translation regulation of RNA in eukaryotic cells have a significant impact on cellular gene expression and maintenance of proteomic homeostasis. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects upper and lower motor neurons and leads to muscle weakness and atrophy. More and more studies have found RNA translation abnormalities in ALS. This article provides an overview of RNA translation and regulation in eukaryotic cells under physiological and stress conditions, and explores the relationship between four different ALS-related genes and translation abnormalities, providing new ideas for the treatment of ALS.

    Release date:2025-05-26 04:29 Export PDF Favorites Scan
  • Preliminary study on the construction of three-dimensional hippocampal neural network by using microfluidic technology in vitro

    ObjectiveTo preliminary study on the feasibility of constructing three-dimensional (3D) hippocampal neural network in vitro by using microfluidic technology.MethodsA network patterned microfluidic chip was designed and fabricated by standard wet etching process. The primary hippocampal neurons of neonatal Sprague Dawley rats were isolated and cultured, and then inoculated on microfluidic chip for culture. Immunofluorescence staining was used to observe the growth of hippocampal neurons at 3, 5, and 7 days of culture and electrophysiological detection of hippocampal neuron network at 7 days of culture.ResultsThe results showed that the number of hippocampal neurons increased gradually with the prolongation of culture time, and the neurite of neurons increased accordingly, and distributed uniformly and regularly in microfluidic chip channels, suggesting that the 3D hippocampal neuron network was successfully constructed in vitro. Single and multi-channel spontaneous firing signals of hippocampal neuronal networks could be detected at 7 days of culture, suggesting that neuronal networks had preliminary biological functions.ConclusionPatterned microfluidic chips can make hippocampal neurons grow along limited paths and form 3D neuron networks with corresponding biological functions such as signal transduction, which lays a foundation for further exploring the function of neuron networks in vitro.

    Release date:2019-01-25 09:40 Export PDF Favorites Scan
  • Expression of MicroRNAs of An Interneuron Precursor Cell Line GE6 in Various Differentiation Conditions

    The purpose of this study was to identify specific microRNAs (miRNAs) during differentiation and maturation of interneurons and to predict their possible functions by analyzing the expression of miRNAs during in vitro differentiation of the rat interneuron precursor cell line GE6. In the experiment, the interneuron precursor cell line GE6 was cultured under three different conditions, i.e. the first was that had not added growth factors and the normal differentiation cultured for 4 days (Ge6_4d); the second was that cultured with bone morphogenetic protein-2 (BMP2) for 4 days (Ge6_bmp2); and the third was that cultured with sonic hedgehog (SHH) for 4 days (Ge6_shh). In addition, another group of undifferentiated GE6 (Ge6_u) was applied as a control. We found in this study that the expression levels of a large number of miRNAs changed significantly during GE6 differentiation. The expression levels of miR-710, miR-290-5p and miR-3473 increased in the GE6 cells with secreted factor BMP2. These miRNAs may play important regulatory roles during interneuron differentiation.

    Release date: Export PDF Favorites Scan
  • EFFECT OF OLFACTORY ENSHEATHING CELLS ON GROWTH OF SPINAL CORD NEURONS AND ITSPROTECTIVE EFFECT ON NEURONS AFTER INJURY IN VITRO

    Objective To investigate the effect of olfactory ensheathing cell culture medium (OECCM) on the growth of spinal cord neurons and its protective effect on the injured neurons by H2O2, and to disscuss the probable protective mechanisms of olfactory ensheathing cells (OECs). Methods The primary olfactory ensheathing cells (OECs) were isolated from olfactory bulb of adult SD rat, and OECCM were prepared. The morphology of OECs was observed by inverted phase contrast microscope, identified by rabbit-antiratlow-affinity nerve growth factor p75 (NGFRp75), and its purity were calculated.Primary spinal cord neurons were cultured from 15 to 17 days pregnant SD rats, and injury model of neurons were prepared by H2O2. OECCM and control culture medium were added into the normal spinal neurons (groups A, B). OECCM and control culture medium were added into the injured spinal neurons by H2O2 (groups C, D). In groups A and C, 200 μL of control culture medium was used; in groups B and D, 100 μL of control culture medium and 100 μL of OECCM were used. Then the growth index such as average diameter of neuron body, the number and length of neuron axons were measured. The viabil ities of normal and injured neurons were assessed by MTT. Results OECs showed bipolar or tripolar after 6-9 days of culture. Primary spinal cord neurons were round and bigger, and neuron axons grew significantly and showed bipolar after 5-7 days of culture. The immunocytochemisty of OECs by NGFRp75 showed that membrane were stained. The degree of purity was more than 90%. Primary spinal cord neurons grew well after 6-9 days of culture, and compared with group A, neurons of group B grew b, whose cell density and diameter were bigger. The average diameter of neuron body, the number and length of neuron axons were (33.38 ± 6.80) D/μm, (1.67 ± 0.80), and (91.19 ± 62.64) L/μm in group A, and (37.39 ± 7.28) D/μm, (1.76 ± 0.82), and (121.33 ± 81.13) L/μm in group B; showing statistically significant differences (P lt; 0.05). The absorbency (A) value of neurons was 0.402 0 ± 0.586 9 in group A and 0.466 0 ± 0.479 0 in group B; showing statistically significant difference (P lt; 0.01). After 2 hours of injury by H2O2, the cell density of spinal cord neurons decreased, and neuron axons shortened. The A value of injured neurons was 0.149 0 ± 0.030 0 in group C and 0.184 0 ± 0.052 0 in group D, showing statistically significant difference (P lt; 0.01). Conclusion The results above suggest that OECCM could improve the growth of spinal cord neurons and protectthe injured neurons. The neurotrophic factors that OECs secrete play an important role in the treatment of spinal cord injury.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content