Objective To investigate the quantity and distribution of motor fiber of rat’s C7 nerve root. Methods Motor fiber quantity and section area in the main nerves of the upper extremity and the fascicles of C7 in 30 SD rats were analyzed.Results Fascicles and certain amount (207) of motor fibers from the anterior division of C7 were distributed to musculocutaneous nerve and median nerve, the orientation of these fibers were not clear. The ones (323) from posterior division were to the axillary, radial, and dorsal thoracic nerves, thus the orientation of these fascicles was relatively definite. Conclusion Thedistribution of the motor fibers and fascicles in the divisions of C7 in rat is similar to human beings, so rat is a relatively good model for the study of selective C7 nerve root transfer.
Objective To observe the effect of selective sacral rhizotomy in treating spastic bladder after spinal cord injury and to explore the mechanism and the best surgical method of different sacral rhizotomies. Methods The spastic bladder models were established in 12 male dogsand were divided into 4 groups according to the different rhizotomies of the sacral nerve as the following: rhizotomy of the anterior root of S2(group A), rhizotomy of the anterior root of S2 and half of the anterior root of S3(group B), rhizotomy of the anterior roots of S2 and S3(group C), and total rhizotomy of the nerve roots of S2-4 (group D). By urodynamic examination and electrophysiological -observation, the changes of all functional data were recorded and comparedbetween pre-rhizotomy and post-rhizotomy to testify the best surgical method. In clinical trial, according to the results of the above experiments, rhizotomy of the anterior root of S2 or one of the halfanterior root of S3 were conducted on 32 patients with spastic bladder after spinal cord injury. The mean bladder capacity, the mean urine evacuation and the mean urethra pressure were (120±30), (100±30)ml and (120±20) cm H2 O, respectively before rhizotomy. Results After rhizotomy, the bladder capacity in 4 groups amounted to (150±50), (180±50), (230±50), and (400±50) ml, respectively; and the urine evacuation volume were (130±30), (180±50), (100±50) and (50±30)ml, respectively. In the treated 32 patients, the mean bladder capacity were raised to 410 ml, and the mean urine evacuation volume were also increased to 350 ml. Incontinence of urine disappeared in all patients. After 22-month follow-up on 13 patients, no recurrence was observed. Conclusion The effectof selective sacral rhizotomy in treating spastic cord injury is significant and worthy of further studies.
Objective To observe the result of reconstructing quadriceps femoris function in the paraplegia rats by using the 7th cervical nerve root (C7) transposition with autologous and allogeneic neural transplantation. Methods Twenty16-week-old SPF male Wistar rats were adopted to prepare frozen sciatic nerve. Thirty-six Wistar rats were divided into 2 groups (group A and group B, n=18). The left paraplegia model was establ ished with left spinal cord hemisection by the micro scissors under the operation microscope. After the model establ ishment, the homolateral autologous sciatic nerve was bridged with the femoral nerve root by the translocation of C7 in group A, while the allogeneic sciatic nerve was bridged with the femoral nerve root by the translocation of C7 in group B. At 16 weeks and 24 weeks after operation, 9 rats in each group were selected for the neuroelectric-physiological test and then the histomorphology of the nerves was observed under the microscope and the electron microscope. The fresh weight recovery rate of quadriceps femoris was calculated. Results At 16 and 24 weeks after operation, the nerve action-evoked potential (NAP) was (1.14 ± 0.07) mV and (1.21 ± 0.07) mV in group A, and (0.87 ± 0.06) mV and (0.99 ± 0.05) mV in group B; the nerve conduction velocity (NCV) was (17.34 ± 2.15) m/s and (19.00 ± 3.02) m/s in group A, and (11.23 ± 1.45) m/s and (12.54 ± 1.59) m/s in group B, respectively, indicating significant differences (P lt; 0.05) between 2 groups. At 16 and 24 weeks after operation, HE staining and Bielschowsky staining showed that group A had a large number of nerve fiber regeneration, with a regular arrange of axons; while group B had l ittle nerve fiber regeneration with a scattered arrange of axons. At 24 weeks after operation, images in TEM showed a large number of regeneration myel inated nerve fibers and a small number of unmyel inated nerve fibers through the transplanted nerve in two groups. At 16 weeks after operation, the number of myel inated nerve fibers in group A and group B was (438 ± 79) and (196 ± 31) / vision, the areas of myel inated nerve fiberswere (5 596.00 ± 583.94) and (4 022.63 ± 615.75) μm2 / vision; after 24 weeks, the number of myel inated nerve fibers in groups A and B were (642 ± 64) and (321 ± 75)/vision, the areas of myel inated nerve fibers were (6 689.50 ± 1 142.10) and ( 4 733.00 ± 982.22) μm2/vision, indicating significant differences between two groups (P lt; 0.05). There was no statistically significant difference (P gt; 0.05) in the wet weight recovery rate of quadriceps between group A and group B at 16 weeks (87.96% ± 4.93% vs. 86.47% ± 7.47%) and at 24 weeks after operation (90.10% ± 4.22% vs. 87.66% ± 3.14%). Conclusion C7 transposition combined with autograft and allograft of sciatic nerve can reconstruct the partial function of the quadriceps femoris in paraplegia rats. The effect of graft is better than that of graft obviously.
ObjectiveTo observe the possibility of hyper selective neurectomy (HSN) of triceps branches combined with partial neurotomy of S2 nerve root for relieving spastic equinus foot. Methods Anatomical studies were performed on 12 adult cadaveric specimens. The S2 nerve root and its branches were exposed through the posterior approach. Located the site where S2 joined the sciatic nerve and measured the distance to the median line and the vertical distance to the posterior superior iliac spine plane, and the S2 nerve root here was confirmed to have given off branches of the pelvic splanchnic nerve, the pudendal nerve, and the posterior femoral cutaneous nerve. Between February 2023 and November 2023, 4 patients with spastic equinus foot were treated with HSN of muscle branches of soleus, gastrocnemius medial head and lateral head, and cut the branch where S2 joined the sciatic nerve. There were 3 males and 1 female, the age ranged from 5 to 46 years, with a median of 26 years. The causes included traumatic brain injury in 2 cases, cerebral hemorrhage in 1 case, and cerebral palsy in 1 case. The disease duration ranged from 15 to 84 months, with a median of 40 months. The triceps muscle tone measured by modified Ashworth scale (MAC) before operation was grade 3 in 2 cases and grade 4 in 2 cases. The muscle strength measured by Daniels-Worthingham manual muscle test (MMT) was grade 2 in 1 case, grade 3 in 1 case, and 2 cases could not be accurately measured due to grade 4 muscle tone. The Holden walking function grading was used to evaluate lower limb function and all 4 patients were grade 2. After operation, triceps muscle tone, muscle strength, and lower limb function were evaluated by the above grading. Results The distance between the location where S2 joined the sciatic nerve and median line was (5.71±0.53) cm and the vertical distance between the location and posterior superior iliac spine plane was (6.66±0.86) cm. Before joining the sciatic nerve, the S2 nerve root had given off branches of the pelvic splanchnic nerve, the pudendal nerve, and the posterior femoral cutaneous nerve. All the 4 patients successfully completed the operation, and the follow-up time was 4-13 months, with a median of 7.5 months. At last follow-up, the muscle tone of the patients decreased by 2-3 grades when compared with that before operation, and the muscle strength did not decrease when compared with that before operation. Holden walking function grading improved by 1-2 grades, and there was no postoperative hypoesthesia in the lower limbs. Conclusion HSN of triceps branches combined with partial neurotomy of S2 nerve root can relieve spastic equinus foot without damaging other sacral plexus nerves.
Objective To observe the recovery of the sensory and motor function of the repaired l imb and the impact on the healthy l imb function after contralateral C7 nerve root transposition for treating brachial plexus root avulsion injury. Methods Between August 2008 and November 2010, 22 patients with brachial plexus root avulsion injuries were treated with contralateral C7 nerve root transposition. All patients were male, aged 14 to 47 years (mean, 33.3 years). Total brachialplexus root avulsion was confirmed by preoperative cl inical examination and electrophysiological tests. In 22 cases, median nerve was repaired in 16 cases, radial nerve in 3 cases, and musculocutaneous nerve in 3 cases; primary operation was performed in 2 patients, and two-stage operation was performed in 20 patients. The sensory and motor functional recovery of the repaired limb was observed after operation. Results Twenty-one patients were followed up 7-25 months (mean, 18.4 months). In 16 cases of contralateral C7 nerve root transposition to the median nerve, wrist flexors reached more than M3 in 10 cases, while finger flexors reached more than M3 in 7 cases; sensation reached more than S3 in 11 cases. In 3 cases of contralateral C7 nerve root transposition to the musculocutaneous nerve, elbow flexors reached more than M3 in 2 cases; sensation reached more than S3 in 2 cases. In 3 cases of contralateral C7 nerve root transposition to the radial nerve, wrist extensor reached more than M3 in 1 case; sensation reached more than S3 in 1 case. Conclusion Contralateral C7 nerve root transposition is a good procedure for the treatment of brachial plexus root avulsion injury. Staged operation is one of important factors influencing treatment outcome.
ObjectiveTo review the research progress of C5 palsy (C5P) after cervical surgery, providing new clinical intervention ideas for the C5P patients. MethodsThe relevant literature domestically and abroad was extensively consulted and the latest developments in the incidence, risk factors, manifestations and diagnosis, prevention, and intervention measures of C5P were systematically expounded. ResultsC5P is characterized by weakness in the C5 nerve innervation area after cervical decompression surgery, manifested as limited shoulder abduction and elbow flexion, with an incidence rate more than 5%, often caused by segmental spinal cord injury or mechanical injury to the nerve roots. For patients with risk factors, careful operation and preventive measures can reduce the incidence of C5P. Most of the patients can recover with conservative treatment such as drug therapy and physical therapy, while those without significant improvement after 6 months of treatment may require surgical intervention such as foraminal decompression and nerve displacement. ConclusionCurrently, there has been some advancement in the etiology and intervention of C5P. Nevertheless, further research is imperative to assess the timing of intervention and surgical protocol.
Objective To provide the anatomical basis of contralateral C7 root transfer for the recovery of the forearm flexor function. Methods Thirty sides of adult anti-corrosion specimens were used to measure the length from the end of nerves dominating forearm flexor to the anastomotic stoma of contralateral C7 nerve when contralateral C7 nerve transfer was used for repair of brachial plexus lower trunk and medial cord injuries. The muscle and nerve branches were observed. The length of C7 nerve, C7 anterior division, and C7 posterior division was measured. Results The length of C7 nerve, anterior division, and posterior division was (58.8 ± 4.2), (15.4 ± 6.7), and (8.8 ± 4.4) mm, respectively. The lengths from the anastomotic stoma to the points entering muscle were as follow: (369.4 ± 47.3) mm to palmaris longus, (390.5 ± 38.8) mm (median nerve dominate) and (413.6 ± 47.4) mm (anterior interosseous nerve dominate) to the flexor digitorum superficialis, (346.2 ± 22.3) mm (median nerve dominate) and (408.2 ± 23.9) mm (anterior interosseous nerve dominate) to the flexor digitorum profundus of the index and the middle fingers, (344.2 ± 27.2) mm to the flexor digitorum profundus of the little and the ring fingers, (392.5 ± 29.2) mm (median nerve dominate) and (420.5 ± 37.1) mm (anterior interosseous nerve dominate) to the flexor pollicis longus, and (548.7 ± 30.0) mm to the starting point of the deep branch of ulnar nerve. The branches of the anterior interosseous nerve reached to the flexor hallucis longus, the deep flexor of the index and the middle fingers and the pronator quadratus muscle, but its branches reached to the flexor digitorum superficials in 5 specimens (16.7%). The branches of the median nerve reached to the palmaris longus and the flexor digitorum superficial, but its branches reached to the deep flexor of the index and the middle fingers in 10 specimens (33.3%) and to flexor hallucis longus in 6 specimens (20.0%). Conclusion If sural nerve graft is used, the function of the forearm muscles will can not be restored; shortening of humerus and one nerve anastomosis are good for forearm flexor to recover function in clinical.
ObjectiveTo evaluate the long-term effects on the lower limb function after S1 nerve root transection as dynamic source. MethodsBetween January 2007 and December 2011, 47 patients with atonic bladder dysfunction underwent S1 nerve root transposition to reconstrut the bladder function. There were 43 males and 4 females, with an average age of 40.7 years (range, 22-66 years). The locations were LS1 in 33 cases, LS2 in 5 cases, LS3 in 2 cases, TS12, LS1 in 3 cases, LS1, LS2 in 1 case, LS1, LS3 in 1 case, LS1, LS4 in 1 case, and LS2, LS3 in 1 case. The anastomosis of the SS2 or SS3 nerve root to S1 nerve root was performed from 4 to 24 months (mean, 8 months) after spinal cord injury. The strength of ankle plantar flexion was grade 4 in 5 cases and grade 5 in 42 cases before operation. ResultsThe strength of ankle plantar flexion had no obvious decrease (grade 4 or 5) in 31 cases, reduced 0.5 grade in 16 cases at 2 days after operation. All the patients were followed up 3-8 years (mean, 5.1 years). At 2 weeks after operation, the nerve electrophysiological examination showed neurogenic damage at operated side in most patients, including reduced amplitude tibial nerve in 19 cases, for common peroneal nerve in 13 cases, and for tibial nerve and common peroneal nerve in 9 cases. Except the velocity of common peroneal nerve (t=-1.881, P=0.093), the other electric physiological indexes showed significant differences between at pre- and post-operation (P<0.05). The muscle strength basically recovered to preoperative level (grade 4 or 5) during follow-up, and there was no impairment of lower limb function. ConclusionS1 transection has no significant effects on lower limb function, so S1 nerve can be used as dynamic nerve for nerve function reconstruction.
ObjectiveTo review the research progress of total endoscopic minimally invasive technique in treating cervical nerve root canal stenosis (CNRCS).MethodsThe related literature at home and abroad was extensively reviewed. The research history, current situation, research progress, advantages and disadvantages of minimally invasive treatment of CNRCS under total endoscope were summarized.ResultsIn recent years, with the continuous development of minimally invasive technique of total endoscope in spine surgery, the surgical treatment methods are also constantly innovated. Compared with the traditional open surgery, minimally invasive treatment of CNRCS under total endoscope can obtain better effectiveness, keep the stability of the cervical segment to the maximum extent, reduce the impact on the activity of the cervical spine and the occurrence of related surgical complications, which is an effective minimally invasive technology.ConclusionThe minimally invasive treatment of CNRCS under total endoscope has achieved some results, which is expected to be one of the indispensable means to treat CNRCS, but it still needs to be improved.
ObjectiveTo review the definition and possible etiologies for C5 palsy. MethodsThe literature on C5 palsy at home and abroad in recent years was extensively reviewed, and the possible etiologies were analyzed based on clinical practice experience. ResultsThere are two main theories (nerve root tether and spinal cord injury) accounting for the occurrence of C5 palsy, but both have certain limitations. The former can not explain the occurrence of C5 palsy after anterior cervical spine surgery, and the latter can not explain that the clinical symptoms of C5 palsy is often the motor dysfunction of the upper limb muscles. Based on the previous reports, combining our clinical experience and research, we propose that the occurrence of C5 palsy is mainly due to the instrumental injury of anterior horn of cervical spinal cord during anterior cervical decompression. In addition, the C5 palsy following surgery via posterior approach may be related to the nerve root tether caused by the spinal cord drift after decompression. ConclusionIn view of the main cause of C5 palsy after cervical decompression, it is recommended to reduce the compression of the spinal cord by surgical instruments to reduce the risk of this complication.