Objective To explore the correlation between the quantitative and qualitative features of CT images and the invasiveness of pulmonary ground-glass nodules, providing reference value for preoperative planning of patients with ground-glass nodules. MethodsThe patients with ground-glass nodules who underwent surgical treatment and were diagnosed with pulmonary adenocarcinoma from September 2020 to July 2022 at the Third Affiliated Hospital of Kunming Medical University were collected. Based on the pathological diagnosis results, they were divided into two groups: a non-invasive adenocarcinoma group with in situ and minimally invasive adenocarcinoma, and an invasive adenocarcinoma group. Imaging features were collected, and a univariate logistic regression analysis was conducted on the clinical and imaging data of the patients. Variables with statistical difference were selected for multivariate logistic regression analysis to establish a predictive model of invasive adenocarcinoma based on independent risk factors. Finally, the sensitivity and specificity were calculated based on the Youden index. Results A total of 555 patients were collected. The were 310 patients in the non-invasive adenocarcinoma group, including 235 females and 75 males, with a meadian age of 49 (43, 58) years, and 245 patients in the invasive adenocarcinoma group, including 163 females and 82 males, with a meadian age of 53 (46, 61) years. The binary logistic regression analysis showed that the maximum diameter (OR=4.707, 95%CI 2.060 to 10.758), consolidation/tumor ratio (CTR, OR=1.027, 95%CI 1.011 to 1.043), maximum CT value (OR=1.025, 95%CI 1.004 to 1.047), mean CT value (OR=1.035, 95%CI 1.008 to 1.063), spiculation sign (OR=2.055, 95%CI 1.148 to 3.679), and vascular convergence sign (OR=2.508, 95%CI 1.345 to 4.676) were independent risk factors for the occurrence of invasive adenocarcinoma (P<0.05). Based on the independent predictive factors, a predictive model of invasive adenocarcinoma was constructed. The formula for the model prediction was: Logit(P)=–1.293+1.549×maximum diameter of lesion+0.026×CTR+0.025×maximum CT value+0.034×mean CT value+0.72×spiculation sign+0.919×vascular convergence sign. The area under the receiver operating characteristic curve of the model was 0.910 (95%CI 0.885 to 0.934), indicating that the model had good discrimination ability. The calibration curve showed that the predictive model had good calibration, and the decision analysis curve showed that the model had good clinical utility. Conclusion The predictive model combining quantitative and qualitative features of CT has a good predictive ability for the invasiveness of ground-glass nodules. Its predictive performance is higher than any single indicator.
ObjectiveTo predict the probability of lymph node metastasis after thoracoscopic surgery in patients with lung adenocarcinoma based on nomogram. MethodsWe analyzed the clinical data of the patients with lung adenocarcinoma treated in the department of thoracic surgery of our hospital from June 2018 to May 2021. The patients were randomly divided into a training group and a validation group. The variables that may affect the lymph node metastasis of lung adenocarcinoma were screened out by univariate logistic regression, and then the clinical prediction model was constructed by multivariate logistic regression. The nomogram was used to show the model visually, the receiver operating characteristic (ROC) curve, calibration curve and clinical decision curve to evaluate the calibration degree and practicability of the model. ResultsFinally 249 patients were collected, including 117 males aged 53.15±13.95 years and 132 females aged 47.36±13.10 years. There were 180 patients in the training group, and 69 patients in the validation group. There was a significant correlation between the 6 clinicopathological characteristics and lymph node metastasis of lung adenocarcinoma in the univariate logistic regression. The area under the ROC curve in the training group was 0.863, suggesting the ability to distinguish lymph node metastasis, which was confirmed in the validation group (area under the ROC curve was 0.847). The nomogram and clinical decision curve also performed well in the follow-up analysis, which proved its potential clinical value. ConclusionThis study provides a nomogram combined with clinicopathological characteristics, which can be used to predict the risk of lymph node metastasis in patients with lung adenocarcinoma with a diameter≤3 cm.
ObjectiveTo explore the mechanism by which the tumor suppressor gene Testin affects the proliferation, migration, and invasive biological activity of lung adenocarcinoma cell lines by regulating the RhoA pathway. MethodThe cbioportal tumor gene expression was used to screen for genes with high correlation with TES gene expression in lung adenocarcinoma, and the 200 genes with the highest correlation were selected for pathway enrichment analysis. Upload these 200 genes to the David gene annotation tool for GO_Biological Process pathway analysis, GO Molecular Function pathway analysis, KEGG pathway analysis, and Reactome pathway analysis. The lung adenocarcinoma cell line H1299 was cultured, and an overexpression Testin plasmid was constructed and transfected into H1299 cells. The mRNA and protein expression of RhoA, Rac1, and Cdc42 were detected using qRT PCR and western blot. On the basis of downregulating RhoA expression through overexpression of Testin, the overexpression plasmid of RhoA (TES+RhoA) was transfected simultaneously to induce a downregulation of RhoA expression, and the changes in malignant phenotype of lung adenocarcinoma cells were detected. The biological activity changes of adenocarcinoma cell lines after the above intervention were verified through CCK-8 experiment, Transwell experiment, and Matrigel experiment. Results The results of pathway analysis prediction showed that Testin may be involved in regulating the Rho GTPase signaling pathway. Overexpression of Testin did not affect the mRNA levels of RhoA, Rac1, and Cdc42 (all P>0.05), nor did it affect the protein expression levels of Rac1 and Cdc42 (all P>0.05), but it significantly reduced the protein level of RhoA (P<0.05). Knocking down RhoA in lung adenocarcinoma cell H1299 can significantly inhibit cell proliferation, migration, and invasion ability (all P<0.05). Simultaneously transfecting RhoA overexpression plasmid on the basis of overexpression of Testin can downregulate RhoA expression, but does not affect Testin expression. ConclusionsRhoA plays a pro-cancer role in lung adenocarcinoma, and Testin can inhibit RhoA expression. Overexpression of RhoA can rescue Testin's effect on lung adenocarcinoma cell proliferation, migration, and invasion. Testin exerts its anti-cancer biological activity by regulating RhoA.
Objective To investigate the expression of SAPCD2 in the lung adenocarcinoma cells, and to study the effect of SAPCD2 regulating Hippo signaling pathway on the proliferation, invasion, migration and apoptosis of the lung adenocarcinoma cells and its mechanism. Methods Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression levels of SAPCD2 mRNA and protein in four types of lung cancer cells (HCC827, H1650, SK-MES-1, A549) and human normal lung epithelial cells (BESA-2B), respectively. Then, lung cancer cells with relatively high levels of SAPCD2 expression were selected for subsequent experiments. The experiment cells were divided into a normal control group (NC group), a si-SAPCD2 group, and a pathway inhibitor group (si-SAPCD2+XMU-MP-1 group). Firstly, SAPCD2 mRNA was silenced using small interfering RNA (siRNA) technology, and then qRT-PCR was used to detect the expression of SAPCD2 in transfected lung cancer cells; using clone plate assay to detect the proliferation of lung cancer cells after silencing; using flow cytometry to detect the apoptosis of lung cancer cells after silencing; observe the number of lung cancer cells at different stages through cell cycle experiments; then Transwell experiment was used to analyze the effect of silencing SAPCD2 on the migration and invasion of lung cancer cell migration. Finally, Western blot was used to detect the expression of ki-67, Bcl-2, Caspase-3, NF2, P-MST1, P-LATS1, P-YAP, YAP, and TAZ proteins.Results SAPCD2 had the highest expression level in lung adenocarcinoma A549 cells (P<0.01). Silencing SAPCD2 significantly decreased the proliferation ability of A549 cells (P<0.01), inhibited their migration (P<0.05) and invasion (P<0.01), and promoted A549 cell apoptosis (P<0.01); more than half of the cells remained in the G0/G1 phase. Compared with the NC group, A549 cells showed a significant increase in G0/G1 phase cells (P<0.01), a significant decrease in G2/M and S phase cells (P<0.01), and a significant increase in the proportion of early apoptotic cells (P<0.01). Western blot results showed that silencing SAPCD2 down-regulated the expression of ki-67, Bcl-2, YAP, and TAZ proteins compared to the NC group (P<0.01), and up-regulated the expression of Caspase-3, NF2, P-MST1, P-LATS1, and P-YAP proteins (P<0.01). Conclusions The expression of SAPCD2 in lung adenocarcinoma A549 cells is significantly higher than that in normal lung epithelial cells (BESA-2B), which promotes the proliferation, migration and invasion of A549 cells and inhibits apoptosis. The mechanism may be related to the inhibition of Hippo signaling pathway.
ObjectiveA competing endogenous RNA (ceRNA) regulatory network associated with long non-coding RNA (lncRNA) specific for lung adenocarcinoma (LUAD) was constructed based on bioinformatics methods, and the functional mechanism of actinfilament-associated protein 1-antisense RNA1 (AFAP1-AS1) in LUAD was analyzed, in order to provide a new direction for the study of LUAD therapeutic targets. MethodsThe gene chip of LUAD was downloaded from the Gene Expression Omnibus (GEO), and lncRNA and mRNA with differential expression between LUAD and normal tissues were screened using GEO2R online software, and their target genes were predicted by online databases to construct ceRNA networks and perform enrichment analysis. In cell experiments, AFAP1-AS1 was genetically knocked down and siRNA was constructed and transfected into LUAD cells A549 by cell transfection. CCK8, transwell, scratch assay and flow cytometry were used to detect the ability of cells to proliferate, invade, migrate and apoptosis. ResultsA total of 6 differentially expressed lncRNA and 494 differentially expressed mRNA were identified in the microarray of LUAD. The ceRNA network involved a total of 6 lncRNA, 22 miRNA, and 55 mRNA. Enrichment analysis revealed that mRNA was associated with cancer-related pathways. In cell assays, knockdown of AFAP1-AS1 inhibited cell proliferation, invasion, and migration, and AFAP1-AS1 promoted apoptosis. ConclusionIn this study, we construct a lncRNA-mediated ceRNA network, which may help to further investigate the mechanism of action of LUAD. In addition, through cellular experiments, AFAP1-AS1 is found to have potential as a therapeutic target for LUAD.
Objective To determine the prognostic biomarkers and new therapeutic targets of the lung adenocarcinoma (LUAD), based on which to establish a prediction model for the survival of LUAD patients. Methods An integrative analysis was conducted on gene expression and clinicopathologic data of LUAD, which were obtained from the UCSC database. Subsequently, various methods, including screening of differentially expressed genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA), were employed to analyze the data. Cox regression and least absolute shrinkage and selection operator (LASSO) regression were used to establish an assessment model. Based on this model, we constructed a nomogram to predict the probable survival of LUAD patients at different time points (1-year, 2-year, 3-year, 5-year, and 10-year). Finally, we evaluated the predictive ability of our model using Kaplan-Meier survival curves, receiver operating characteristic (ROC) curves, and time-dependent ROC curves. The validation group further verified the prognostic value of the model. Results The different-grade pathological subtypes' DEGs were mainly enriched in biological processes such as metabolism of xenobiotics by cytochrome P450, natural killer cell-mediated cytotoxicity, antigen processing and presentation, and regulation of enzyme activity, which were closely related to tumor development. Through Cox regression and LASSO regression, we constructed a reliable prediction model consisting of a five-gene panel (MELTF, MAGEA1, FGF19, DKK4, C14ORF105). The model demonstrated excellent specificity and sensitivity in ROC curves, with an area under the curve (AUC) of 0.675. The time-dependent ROC analysis revealed AUC values of 0.893, 0.713, and 0.632 for 1-year, 3-year, and 5-year survival, respectively. The advantage of the model was also verified in the validation group. Additionally, we developed a nomogram that accurately predicted survival, as demonstrated by calibration curves and C-index. Conclusion We have developed a prognostic prediction model for LUAD consisting of five genes. This novel approach offers clinical practitioners a personalized tool for making informed decisions regarding the prognosis of their patients.
This research is to explore the perfusion time-intensity curve parameters of a lung adenocarcinoma xenograft into nude mouse model with contrast enhanced ultrasonography (CEUS); and to investigate the angiogenesis features of tumor at different growth time. Twenty one lung adenocarcinoma xenografted nude mice were divided into three groups and inculcated with human lung adenocarcinoa. Time window for examining CEUS were respectively in 7-day, 14-day and 28-day. The perfusion parameters including rise time (RT), peak intensity (PI), area under the curve (AUC) of lung tumor were obtained on CEUS images by using off-line software Q lab. Immunohistochemically staining for CD34 was used to observe the microvessel density (MVD).The 7-day group had the highest AUC and PI; AUC and PI of 14-day and 28-day group decreased gradually (P < 0.05). RT was increased as tumor growth. In tumor with necrosis, AUC and PI of non-necrosis part were also larger than necrosis part (P < 0.05). Immunohistochemically staining for CD34 of all tumors reflected that the density of microvessels in necrosis tumor was significantly higher than those without necrosis (7.50±3.44 vs.12.44±5.74, P=0.034). Pearson correlation indicated that PI was positively related with MVD (r=0.668, P=0.008). Lung adenocarcinoma perfusion characteristic can be accessed from time-intensity curve parameters by using noninvasively and non-radiative contrast enhanced ultrasonography. Time-intensity curve parameters including AUC, PI and RT may reflect tumor angiogenesis.
Objective To investigate the relationship between clinical features and lymph node metastasis in lung adenocarcinoma patients with T1 stage. Methods We retrospectively analyzed the clinical data of 253 T1-stage lung adenocarcinoma patients (92 males and 161 females at an average age of 59.45±9.36 years), who received lobectomy and systemic lymph node dissection in the Second Affiliated Hospital of Harbin Medical University from October 2013 to February 2016. Results Lymph node metastasis was negative in 182 patients (71.9%) and positive in 71 (28.1%). Poor differentiation (OR=6.988, P=0.001), moderate differentiation (OR=3.589, P=0.008), micropapillary type (OR=24.000, P<0.001), solid type (OR=5.080, P=0.048), pleural invasion (OR=2.347, P=0.024), age≤53.5 years (OR=2.594, P=0.020) were independent risk factors for lymph node metastasis. In addition, in the tumor with diameter≥1.55 cm (OR=0.615, P=0.183), although the cut-off value of 1.55 cm had no significant difference, it still suggested that tumor diameter was an important risk factor of lymph node metastasis. Conclusion In lung adenocarcinoma with T1 stage, the large tumor diameter, the low degree of differentiation, the high ratio of consolidation, and the micropapillary or solid pathological subtypes are more prone to have lymph node metastasis.
Objective To investigate the molecular mechanisms by which the long non-coding RNA (lncRNA) MIR223HG affects the proliferation, migration and apoptosis of lung adenocarcinoma cells. MethodsDNA damaging agent Zeocin was used to treat human embryo lung cell (MRC-5) and lung cancer cell (A549 and H1299), and the expression of MIR223HG was tested by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Moreover, the ataxia-telangiectasia mutated (ATM) protein and ATM pathway downstream factor Cell cycle checkpoint kinase 2 (Chk2), p53 tumor suppressor protein (p53) in the lung cancer cell (A549 and H1299) with Zeocin were also tested by qRT-PCR. Cell transfection and Transwell migration assay, colony formation assays, apoptosis assays were performed to verify the role of ATM in the expression of MIR223HG in lung adenocarcinoma. ResultsThe expression of MIR223HG was reduced markedly in the lung cancer cells (A549 and H1299) compared with human embryo lung cell (MRC-5) after treated with Zeocin. ATM protein and its downstream factors Chk2, p53 involved in the process, and ATM regulated the expression of MIR223HG in the lung cancer cells with Zeocin. Futhermore, ATM joined in the processes that MIR223HG regulated the lung cancer cells proliferation, migration and apoptosis. Conclusions The expression of MIR223HG is related to the DNA damage response in the lung cancer, and MIR223HG regulates lung cancer cells proliferation, migration and apoptosis by ATM/Chk2/p53 pathway. MIR223HG may be a potential therapeutic target for lung adenocarcinoma treatment.
ObjectiveTo explore the predictive value of CT signs of mixed ground-glass nodules in the pathological subtype and differentiation of lung adenocarcinoma. MethodsThe clinical data of 66 patients with mixed ground-glass nodules pathologically diagnosed as invasive adenocarcinoma (IAC) in the Second Department of Thoracic Surgery, the First Affiliated Hospital of Xiamen University from May to December 2021 were retrospectively analyzed, including 20 males and 46 females, aged 35-75 years. The CT findings were analyzed before operation, and the lesion profile was cut after operation to distinguish the ground-glass and solid components, and the pathological results of different positions were obtained. According to the postoperative pathological results, the patients were divided into a low-risk group (containing adherent type and no components of micropapillary subtype and solid subtype, n=16), a medium-risk group (containing niple or acinar type and no components of micropapillary subtype and solid subtype, n=38), and a high-risk group (containing micropapillary or solid subtype, n=12). The relationships between CT features and the pathological subtype and degree of differentiation were analyzed and compared. ResultsIn 66 patients with IAC, the infiltration degree of solid components was greater than that of ground-glass components. When the solid component ratio (CTR) was≥25% (sensitivity 90.2%, specificity 64.0%, P=0.005), and the average CT value was>−283.95 HU (sensitivity 82.9%, specificity 64.0%, P=0.000), the histological grade was more inclined to medium and low differentiation. The CTR, Ki-67, average CT value and histological grade of IAC in the medium- and high-risk groups were higher than those of nodules in the low-risk group. ConclusionThe infiltration degree of solid components is higher than that of ground-glass components in IAC mixed ground-glass nodules. The pathological subtype, Ki-67 expression and histological grade of lung adenocarcinoma can be predicted according to its CT characteristics, which has important clinical significance for determining the timing of surgery.