To detect the cell density, apoptotic incidence and the expressions of Bax and Caspase-3in human lumbar intervertebral discs, so as to further understand the mechanism of human lumbar intervertebral discdegeneration and provide a new idea for biologic treatment of it in future. Methods From May to December in 2006,30 human lumbar intervertebral discs in experimental group(L2 to S1)were surgically collected from 27 patients undergoing posterior lumbar intervertebral discoidectomy and fusion. All the cases were affirmed by MRI and they never experienced discography, collagenolysis of nucleus pulposus and percutaneous laser disc decompression. The control group consisted of 20 human lumbar intervertebral discs(L2 to S1)harvested from 5 young men without spine-related condition immediately after their accidental death. Apoptotic disc cells were detected by TUNEL and histomorphology, and immunohistochemical staining with SP method was performed to examine the expressions of Bax and Caspase-3 in all specimens. Results HE staining disclosed that the average cell density in control group (17.16 ± 1.22)/HP was higher than that in experimental group (12.41 ± 0.95)/HP (P lt; 0.01). However, TUNEL staining observed that the average TUNEL positive incidence in control group (6.97% ± 0.92%) was lower than that in experimental group (12.59% ± 0.95%), (P lt; 0.01). Immunohistochemical staining with SP method showed that the Bax and Caspase-3 positive incidence of nucleus pulposus in control group (11.02% ± 1.18%, 9.01% ± 1.00%) were lower than those in experimental group (19.29% ± 1.18%, 15.07% ± 0.97%), (P lt; 0.01). The results of the average gray scale value of nucleus pulposus in control group were 187.33 ± 7.88 and 185.68 ± 3.26, respectively, with 124.98 ±6.69 and 160.13 ± 4.37 in experimental group. There was significant difference between the two groups (P lt; 0.01). When thetotal 50 specimens in the two groups were analyzed, TUNEL positive incidence showed significant inverse correlations with their respectively corresponding cell densities (r = - 0.88, r = - 0.93, P lt; 0.01). The Bax and Caspase-3 positive incidence of nucleus pulposus showed significant positive correlation with the TUNEL positive incidence of nucleus pulposus (r = 0.83, r = 0.91, P lt; 0.01). Conclusion The decrease of cell density is involved in the development of human lumbar intervertebral disc degeneration. Bax and Caspase-3 might play a role in disc cell apoptosis in nucleus pulposus of human lumbar intervertebral disc.
Objective To explore the osteogenic potential of cervical intervertebral disc fibroblasts in vitro, to investigate the regulatory factors of recombinant human bone morphogenetic protein 2(rhBMP-2) and tumor necrosis factor α(TNF-α) on osteogenic phenotype of fibroblasts and to discuss the condition that facilitates osteogenesis of fibroblasts. Methods Theannulus fibroblasts cell lines of experiment goats were established in vitro and the biologicspecificity was found. According to different medias, 4 groups were included in this experiment: control group, TNF-α group ( 50 U/ml TNF-α), rhBMP-2 group (0.1 μg/ml rhBMP-2) and TNF-α+rhBMP-2 group (50 U/ml TNF-α+0.1 μg/ml rhBMP-2). Thefibroblasts were incubated in the media for about 3 weeks,and then the markers for osteogenic features were investigated by biochemistry, histochemistry observations. Results rhBMP-2 and TNF-α had no effect on the proliferation of fibroblasts from the experiment goats. rhBMP-2 or TNF-α could stimulate fibroblasts to secrete alkaline phosphatase and collagen type Ⅰ. The combined use of rhBMP-2 and TNF-α or the single use of rhBMP-2 could make fibroblasts to secrete osteocalin and the morphological changes of the fibroblasts were very obvious. Histochemical study of the nodules with specific new bone labeler(Alizarin red S) revealed positive reaction, denoting that the nodules produced by the fibroblasts werebone tissues. There was statistically significant difference(Plt;0.05) inALP activity between 3 experimental groups and control group and in secretion of osteocalcin between rhBMP-2 group, TNF-α+rhBMP-2 group and control group. Conclusion The results point out clearly that rhBMP-2 can induce theosteogenic potential of annulus fibroblasts in vitro.
Objective To review the mechanism of extracellular vesicles (EVs) in treating intervertebral disc degeneration (IVDD). Methods The literature about EVs was reviewed and the biological characteristics and mechanism of EVs in the treatment of IVDD were summarized. Results EVs are a kind of nano-sized vesicles with a double-layered lipid membrane structure secreted by many types of cells. EVs contain many bioactive molecules and participate in the exchange of information between cells, thus they play important roles in inflammation, oxidative stress, senescence, apoptosis, and autophagy. Moreover, EVs are found to slow down the process of IVDD by delaying the pathological progression of the nucleus pulposus, cartilage endplates, and annulus fibrosus. Conclusion EVs is expected to become a new strategy for the treatment of IVDD, but the specific mechanism remains to be further studied.
Degenerative disc disease is a prevalent chronic disease that orthopaedic surgeons currently face as a difficulty. Tissue engineering represents the most promising possible therapeutic strategy for disc repair and regeneration. Surgery is the primary treatment for degenerative disc disease, but there are still inherent limits in practical practice. Electrospinning technique is a method for manufacturing nanoscale fibers with varied mechanical properties, porosity, and orientation, which can imitate the structural qualities and mechanical properties of natural intervertebral discs. Therefore, electrospinning materials can be utilized for disc regeneration and replacement. This article reviews recent advancements in disc tissue engineering and electrostatically spun nanomaterials typically utilized for the fabrication of disc scaffolds, as well as present and future techniques that may enhance the performance of electrostatically spun fibers.
ObjectiveTo explore the feasibility and effectiveness of unilateral pedicle screw rod and single poly (ether-ether-ketone) (PEEK) Cage for lumbar intervertebral disc protrusion. MethodsA total of 126 cases of single segment of lumbar intervertebral disc protrusion between January 2006 and June 2012 were divided into 2 groups in the randomized clinical trial. Unilateral pedicle screw fixation and single PEEK Cage was used in 63 cases (research group), and bilateral pedicle screw fixation and single PEEK Cage in 63 cases (control group). There was no significant difference in gender, age, disease duration, side, and affected segment between 2 groups (P>0.05). Schulte evaluation criterion was used to assess bone graft fusion, Oswestry disability index (ODI) to estimate the quality of life situation, and visual analogue scale (VAS) to evaluate the improvements of lower back pain. Macnab standards was applied to assess postoperative effectiveness, and Emery ways to measure the height of intervertebral space. ResultsThe incision length, operation time, intraoperative blood loss, hospitalization time, and hospitalization fee in research group were significantly less than those in control group (P<0.05). The patients were followed up 12-79 months (mean, 21.3 months) in research group, and 15-73 months (mean, 22.6 months) in control group. The postoperative lordosis was recovered well, and the height of intervertebral space was increased. No loosening or breakage of internal fixation occurred. The time of bone graft fusion was (6.8±1.3) months in research group and was (7.1±1.2) months in control group, showing no significant difference (t=1.153, P=0.110). The height of intervertebral space, ODI score, and VAS score were significantly improved when compared with preoperative ones in 2 groups (P<0.05), but no significant difference was found between 2 groups at preoperation and last follow-up (P>0.05). At 3 months after operation, postoperative effectiveness was assessed according to Macnab criterion, the excellent and good rate was 95.23% in research group (excellent in 13 cases, good in 47 cases, and fair in 3 cases) and was 71.42% in control group (excellent in 7 cases, good in 38 cases, fair in 15 cases, and poor in 3 cases); the research group was significantly superior to control group (χ2=6.110, P=0.006). ConclusionUnilateral pedicle screw fixation and single PEEK Cage has the advantages of small trauma, reliable fixation, shorter operation time, less bleeding, less economic cost, and early off-bed activity time. It can provide a simple and reliable choice in single segmental lumbar intervertebral disc protrusion.
Low back pain caused by intervertebral disc degeneration is a common clinical chronic disease. The regenerative ability of intervertebral disc tissue is extremely poor. Meanwhile, current treating methods can not fundamentally solve such problems. With the increasing awareness of the mechanism of disc degeneration and the rapid development of the fields of cellular and molecular biology, gene and materials engineering, using stem cells and tissue engineering technology to slow down or reverse the progress of disc degeneration may become possible. The author reviewed the application of stem cells for treating degenerative discs from present researching status and concepts for the future in the combination of researches reported both at home and abroad.
ObjectiveTo summarize the research progress of hydrogels for the regeneration and repair of degenerative intervertebral disc and to investigate the potential of hydrogels in clinical application.MethodsThe related literature about the role of hydrogels in intervertebral disc degeneration especially for nucleus pulposus was reviewed and analyzed.ResultsHydrogels share similar properties with nucleus pulposus, and it plays an important role in the regeneration and repair of degenerative intervertebral disc, which can be mainly applied in nucleus pulposus prosthesis, hydrogel-based cell therapy, non-cellular therapy, and tissue engineering repair.ConclusionHydrogels are widely used in the regeneration and repair of intervertebral disc, which provides a potential treatment for intervertebral disc degeneration.
In order to study the mechanical behavior of degeneration and nucleotomy of lumbar intervertebral disc, compression experiments with porcine lumbar intervertebral discs were carried out. The lumbar intervertebral discs with trypsin-treated and nucleus nucleotomy served as the experimental group and the normal discs as the control group. Considering the effects of load magnitude and loading rate, the relationship between stress and strain, instantaneous elastic modulus and creep property of intervertebral disc were obtained. The creep constitutive model was established. The results show that the strain and creep strain of the experimental group increase significantly with the increase of compression load and loading rate, whereas the instantaneous elastic modulus decreases obviously, compared with the control group. It indicates that the effect of load magnitude and loading rate on load-bearing capacity of intervertebral disc after nucleotomy is larger obviously than that of normal disc. The creep behavior of the experimental group can be still predicted by the Kelvin three-parameter solid model. The results will provide theoretical foundation for clinical treatment and postoperative rehabilitation of intervertebral disc disease.
Objective To fabricate a novel composite scaffold with acellular demineralized bone matrix/acellular nucleus pulposus matrix and to verify the feasibility of using it as a scaffold for intervertebral disc tissue engineering through detecting physical and chemical properties. Methods Pig proximal femoral cancellous bone rings (10 mm in external diameter, 5 mm in internal diameter, and 3 mm in thickness) were fabricated, and were dealed with degreasing, decalcification, and decellularization to prepare the annulus fibrosus phase of scaffold. Nucleus pulposus was taken from pig tails, decellularized with Triton X-100 and deoxycholic acid, crushed and centrifugalized to prepare nucleus pulposus extracellular mtrtix which was injected into the center of annulus fibrosus phase. Then the composite scaffold was freeze-dryed, cross-linked with ultraviolet radiation/carbodiimide and disinfected for use. The scaffold was investigated by general observation, HE staining, and scanning electron microscopy, as well as porosity measurement, water absorption rate, and compressive elastic modulus. Adipose-derived stem cells (ADSCs) were cultured with different concentrations of scaffold extract (25%, 50%, and 100%) to assess cytotoxicity of the scaffold. The cell viability of ADSCs seeded on the scaffold was detected by Live/Dead staining. Results The scaffold was white by general observation. The HE staining revealed that there was no cell fragments on the scaffold, and the dye homogeneously distributed. The scanning electron microscopy showed that the pore of the annulus fibrosus phase interconnected and the pore size was uniform; acellular nucleus pulposus matrix microfilament interconnected forming a uniform network structure, and the junction of the scaffold was closely connected. The novel porous scaffold had a good pore interconnectivity with (343.00 ± 88.25) µm pore diameter of the annulus fibrosus phase, 82.98% ± 7.02% porosity and 621.53% ± 53.31% water absorption rate. The biomechanical test showed that the compressive modulus of elasticity was (89.07 ± 8.73) kPa. The MTT test indicated that scaffold extract had no influence on cell proliferation. Live/Dead staining showed that ADSCs had a good proliferation on the scaffold and there was no dead cell. Conclusion Novel composite scaffold made of acellular demineralized bone matrix/acellular nucleus pulposus matrix has good pore diameter and porosity, biomechanical properties close to natural intervertebral disc, non-toxicity, and good biocompatibility, so it is a suitable scaffold for intervertebral disc tissue engineering.
Objective To summarize the research progress of platelet-rich plasma (PRP) for the treatment of discogenic low back pain (DLBP). Methods The literature on the treatment of DLBP with PRP was extensively reviewed, and the classification, treatment mechanism, in vitro and in vivo experiments and clinical trial progress of PRP were summarized. Results According to the PRP composition, preparation methods, and physicochemical properties, there are five commonly used PRP classification systems at present. PRP is involved in delaying or reversing the progress of disc degeneration and pain control by promoting the regeneration of nucleus pulposus cells, increasing the synthesis of extracellular matrix, and regulating the internal microenvironment of degenerative intervertebral disc. Although several in vitro and in vivo studies have confirmed that PRP can promote disc regeneration and repair, significantly relieve pain, and even improve the mobility of DLBP patients. But the contrary conclusion has been reached in a few studies, and there are limitations to the application of PRP. ConclusionCurrent studies have confirmed the effectiveness and safety of PRP in the treatment of DLBP and intervertebral disc degeneration, as well as the advantages of PRP in terms of ease of extraction and preparation, low immunological rejection, high regenerative and repair capacity, and the ability to compensate for the shortcomings of traditional treatment modalities. However, relevant studies are still needed to further optimize PRP preparation methods, unify systematic classification guidelines, and clarify its long-term effectiveness.