Objective To evaluate effect of hypoxia condition (1% or 5% oxygen concentration) on proliferation, adhesion, migration, or viability ability of bone morrow-derived endothelial progenitor cells (EPCs). Methods The bone marrow mononuclear cells of SD rat were acquired with density gradient centrifugation method. They were cultured, induced, and differentiated to the EPCs. Then they were cultured respectively in three different oxygen concentrations (1%, 5%, or 21%). On the 3rd day and the 7th day, the effects of the different oxygen concentrations (1%, 5%, or 21%) on the EPCs’ neovascularization characteristics (including proliferation, adhesion, migration, and viability abilities) were evaluated. Results Whether cultured for the 3rd day or 7th day, the proliferation, adhesion, migration, and viability abilities of the cultured cells in the 1% and 5% oxygen concentrations were significantly better than those of the cultured cells in the 21% oxygen concentration (all P<0.05). Except for the proliferation ability of the cultured cells in the 5% oxygen concentration was significantly better than that of the cultured cells in the 1% oxygen concentration (P<0.05) on the 3rd day, and the adhesion ability on the 3rd day and the proliferation ability on the 7th day had no significantly differences, the other abilities (adhesion, migration, and viability abilities) of the cultured cells in the 1% oxygen concentration were significantly better than those of the cultured cells in the 5% oxygen concentration (allP<0.05). Conclusion Different oxygen concentration has an effect on proliferation, adhesion, migration, or viability ability of bone morrow-derived EPCs, appropriate hypoxia condition (1% or 5% oxygen concentration ) can enhance these abilities.
ObjectiveTo investigate the effects of hypoxia inducible factor 1α (HIF-1α) overexpression on the differentiation of stem cells derived from human exfoliated deciduous teeth (SHED) into vascular endothelial cells.MethodsSHED was isolated from the retained primary teeth donated by healthy children by using collagenase digestion method. The third generation cells were identified by flow cytometry and alizarin red and alkaline phosphatase (ALP) staining after osteogenic differentiation culture. The SHED were divided into blank control group (SHED without any treatment), empty group (SHED infected with empty lentivirus), HIF-1α overexpression group (SHED infected with HIF-1α overexpression lentivirus), Wnt inhibitor group (SHED interfered by IWR-1), and combination group (HIF-1α overexpressed SHED interfered by IWR-1). Real-time fluorescence quantitative PCR (qRT-PCR) and Western blot were used to analyze the expressions of HIF-1α mRNA and protein in the SHED of blank control group, empty group, and HIF-1α overexpression group. Then the SHED in 5 groups were induced differentiation into vascular endothelial cells for 14 days. The expressions of cell surface marker molecule [von Willebrand factor (vWF) and CD31] were detected by flow cytometry. The mRNA expressions of vascular cell adhesion protein 1 (VCAM-1), KDR (Kinase-inserted domain containing receptor), and VE-cadherin (VE) were analyzed by qRT-PCR. The protein expressions of phosphate-glycogen synthasc kinase 3β (p-GSK3β) and β-catenin were analyzed by Western blot. The tube forming ability of induced cells was detected by Matrigel tube forming experiment. The ability of endothelial cells to phagocytic lipid after differentiation was detected by DiI-labeled acetylated low density lipoprotein (DiI-Ac-LDL) phagocytosis.ResultsAfter identification, the cells were SHED. After lentivirus transfection, compared with the blank control group and the empty group, the expressions of HIF-1α mRNA and protein in the HIF-1α overexpression group increased significantly (P<0.05). Compared with the blank control group and the empty group, the expressions of VCAM-1, KDR, and VE mRNA, the percentages of vWF positive cells and CD31 positive cells, and the relative expression of β-catenin protein were significantly higher (P<0.05), the relative expression of p-GSK3β protein was significantly lower (P<0.05), the number of tubules formed and the ability to phagocytic lipids significantly increased (P<0.05) in the HIF-1α overexpression group; while the indicators in the Wnt inhibitor group were opposite to those in the HIF-1α overexpression group (P<0.05). Compared with the HIF-1α overexpression group, the expressions of VCAM-1, KDR, and VE mRNA, the percentages of vWF positive cells and CD31 positive cells, and the relative expression of β-catenin protein were significantly lower (P<0.05), the relative expression of p-GSK3β protein was significantly higher, and the number of tubules formed and the ability of phagocytosis of lipids significantly reduced, showing significant differences between groups (P<0.05).ConclusionOverexpression of HIF-1α can promote SHED to differentiate into vascular endothelial cells by activating Wnt/β-catenin signaling pathway.
ObjectiveTo investigate the expression of C/EBP homologous protein (CHOP) in lung tissue of chronic intermittent hypoxia rats, and explore the intervention effect of edaravone and its possible mechanism.MethodsA total of 120 adult male Wistar rats were randomly divided into three groups: a normal control group (UC group), a chronic intermittent hypoxia group (CIH group), an edaravone intervention group (NE group), and a normal saline group (NS group). The above four groups were also randomly divided into five time subgroups of 3 days, 7 days, 14 days, 21 days and 28 days, respectively, with 6 rats in each time subgroup. The histopathological changes of lung tissue were observed by hematoxylin-eosin (HE) staining and the expression of CHOP in lung tissue was detected by immunohistochemical method.ResultsHE staining results showed that there was no obvious pathological change in UC group. The epithelial cells of lung tissue in CIH group showed edema, hyperemia, widening of alveolar septum and inflammatory cell infiltration. The pathological injury was more serious with the prolongation of intermittent hypoxia time. There were also pathological changes in NE group, but the degree of lung tissue injury was significantly lower than that in CIH group. The results of immunohistochemistry showed that the expression of CHOP in CIH group was significantly higher than that in UC group. The expression of CHOP in NE group was higher than that in UC group, but it was still significantly lower than that in CIH group.ConclusionsThe expression of CHOP protein in lung tissue of chronic intermittent hypoxic rats is enhanced and the high expression of CHOP protein plays a certain role in the lung injury of chronic intermittent hypoxia rats complicated with lung injury. Edaravone may protect lung tissue from chronic intermittent hypoxia by inhibiting the expression of CHOP.
Objective:To investigate the role of 17beta; estradiol on th e expressi on of vascular endothelial growth factor (VEGF) and on the releasing rate of lac tate dehydrogenase (LDH) in cultured anoxiainjured human retinal pigment epit h eliual (RPE) cells. Methods:Established the anoxiainjuried m odel of human RPE c ells with Cobalt Chloride (CoCl2) after RPE cells were pretreated with 17beta;E 2 and tamoxife, 17beta;E2 antagonist. The expression of VEGF mRNA was detecte d by re v erse transcriptionpolymerase chain reaction technique (RTPCR). The cultured RP E cells were divided into four groups: normal control group, anoxiainjured gro u p, 17beta;E2 pretreatment group and 17beta;E2 with tamoxifen pretreatment grou p. The releasing rate of LDH was detected by chromatometry. The expression of VEGF pro tein were detected by cellular immunohistochemistry. Results:T he expression of VEGF and LDH releasing rate were higher in anoxiainjured grou p than that in nor m al control group (P<0.05), and were lower in 17beta;E2 pretreatment group than th at in anoxiainjured group (P<0.05). When the effect of 17beta;E2 was o bstructe d by tamoxifen, the expression of VEGF and LDH releasing rate increased but didn prime;t differ much from which in anoxiainjured group (P>0.05). Conc lusion:The ex pression of VEGF increases in anoxiainjured human RPE cells. 17beta;E2 can do wnr egulate the expression of VEGF and decrease the releasing rate of LDH, which can be blocked by tamoxifen.
Objective To investigate the changes in mitochondrial morphology, structure and function in rats with severe intermittent hypoxia, as well as the effects of intermittent hypoxia and its severity on cognitive function. Methods A total of 18 rats were selected to construct a model of severe intermittent hypoxia, which were divided into a normal control group, an intermittent air control group, and a 5% intermittent hypoxia group for 8 weeks, with 6 rats in each group. The structural and functional changes of mitochondria in the hippocampal CA1 region were observed. A total of 30 rats were randomly divided into 5 groups: a normal control group, an intermittent air control group, a 5% intermittent hypoxia 4-week group, a 5% intermittent hypoxia 6-week group, and a 5% intermittent hypoxia 8-week group, with 6 rats in each group. The cognitive function of the rats in each group was evaluated by Morris water maze experiment. Results In the mitochondria of the hippocampal CA1 region of severely intermittent hypoxic rats, bilayer membranes or multilayer membranes were visible, the mitochondria were swollen, cristae were broken and vacuolated, and their respiratory function was significantly weakened, the membrane permeability was increased, and the membrane potential was reduced. In the Morris water maze, there was no significant difference in swimming speed between the rats. With the prolongation of intermittent hypoxia action time, the latency of finding the hidden platform in each group of rats increased significantly, and the residence time of the target quadrant decreased significantly. Conclusions Mitochondrial structure in the hippocampal CA1 region of the rat brain is destroyed during severe intermittent hypoxia, and dysfunction and cognitive impairment occur. With the prolongation of intermittent hypoxic injury, the degree of cognitive impairment worsens.
With the surged prevalence of myopia, the pathogenic mechanism underlying myopia has attracted attention. At present, it is generally believed in the flied that the reduced blood perfusion in the choroid is crucial for myopigenesis. Then, in the process of myopigenesis, how are the blurred visual signals transmitted to the choroidal blood vessels through the retina and retinal pigment epithelium, leading to the reduced choroidal blood perfusion. The cellular and molecular mechanisms underpinning this process remain elusive. In recent years, the theory of scleral hypoxia has attracted much attention. Popular signaling molecules in current research include dopamine, epidermal growth factor, retinoic acid, cholinergic molecules and adenosine, etc. These factors are likely to participate in signal transduction in retina and RPE, thus causing changes in choroidal blood flow and affecting the occurrence and development of myopia. Therefore, these signaling factors and their downstream pathways may provide new ideas for the prevention and control of myopia targets.
Objective To study the correlation between smoking and obstructive sleep apnea (OSA). Methods A total of 454 patients from October 2015 to July 2021 were retrospectively collected for nocturnal polysomnography monitoring (no less than 7 hours). The patients were divided into an OSA group (n=405) and a control group (n=49, patients with primary snoring) according to the results of polysomnography monitoring. According to the apnea hypopnea index (AHI) and the lowest oxygen saturation during sleep, the severity of OSA was classified into a mild to moderate group (5 times/h ≤ AHI<30 times/h) and a severe group (AHI ≥30 times/h). The patients were inquired about their smoking history, then the patients diagnosed with OSA were further divided into a smoking group, a smoking cessation group, and a non-smoking group based on their smoking history. Results The smoking rate of the patients in the OSA group was higher than that in the control group (50.9% vs. 32.7%, P<0.05), while the smoking rate in the severe OSA group was higher than that in the mild to moderate group (55.7% vs. 39.8%, P<0.05). Smoking was positively correlated with AHI, cumulative percentages of time spent at oxygen saturation below 90% (Ts90%), and total apnea time (r value was 0.196, 0.197, 0.163, P<0.05), while negatively correlated with the lowest and average SpO2 during sleep (r value was –0.202, –0.214, P<0.05). The logistic regression analysis with severe OSA as the outcome variable showed that smoking (OR=1.781) and obesity (OR=1.930) were independent risk factors of severe OSA (P<0.05). The comparison between groups of the OSA patients with different smoking states showed that the proportion of severe OSA, AHI, Ts90%, and total apnea time (77.8%, 53.55 times/h, 18.35%, and 111.70 minutes, respectively) of the smoking group were higher than those of the non-smoking group (62.8%, 40.20 times/h, 8.40%, and 76.20 minutes, respectively, P<0.05). The lowest SpO2 and average SpO2 during sleep (69.50%, 93.00%, respectively) of the smoking group were lower than those of the non-smoking group (75.00%, 94.00%, respectively, both P<0.05). The average SpO2 of the smoking cessation group was higher than that of the smoking group (94.00% vs. 93.00%, P<0.05), and the Ts90% of the smoking cessation group was lower than that of the smoking group (6.75% vs. 18.35%, P<0.05). Conclusions Smoking significantly affects the degree of sleep-disordered breathing and may be an independent risk factor for severe OSA. Smoking can exacerbate the severity of OSA and the degree of hypoxia, while smoking cessation can improve the degree of hypoxia in OSA patients.
ObjectiveTo summarize the application status of hypoxia mimetic agents in bone tissue engineering.MethodsThe related literature about the hypoxia mimetic agents in bone tissue engineering was reviewed and analyzed. And the application status and progress of hypoxia mimetic agents in bone tissue engineering were retrospectively analyzed.ResultsHypoxia mimetic agents have the same effect as hypoxia in up-regulating the level of hypoxia inducible factor 1α (HIF-1α). The combination of hypoxia mimetic agents and scaffolds can up-regulate the level of HIF-1α in bone tissue engineering, thus promoting early vascularization and bone regeneration of the bone defect area, which provides a new idea for using bone tissue engineering to repair bone defect. At present, the commonly used hypoxia mimetic agents include iron chelating agents, oxoglutarate competitive analogues, proline hydroxylase inhibitors, etc.ConclusionHypoxia mimetic agents have a wide application prospect in bone tissue engineering, but they have been used in bone tissue engineering for a short time, more attention should be paid to their possible side effects. In the future research, the hypoxia mimetic agents should be developed in the direction of higher targeting specificity and safety, and the exact mechanism of hypoxia mimetic agents in promoting bone regeneration should be further explored.
Objective To investigate the effect of ginkgolide B (GB) on cysteinyl aspartate specific proteinase-3 (Caspase-3)/chromosome 10 deletion phosphatase-tension protein homologue (PTEN)/protein kinase B (Akt) pathway and cell proliferation and apoptosis in hypoxia/reoxygenation cardiomyocytes. Methods H9C2 cells were cultured in vitro. A control group was cultured in serum-free DMEM high glucose medium at 37°C and 5% CO2 for 28 hours. The remaining groups were prepared with hypoxia/reoxygenation models. A GB low-dose group and a GB high-dose group were treated with GB pretreatment with final concentration of 50 μmol/L and 200 μmol/L respectively at 1 h before hypoxia/reoxygenation. A carvedilol group was treated with carvedilol of a final concentration of 10 μmol/L at 1 h before hypoxia/reoxygenation. The proliferation and apoptosis of H9C2 cells were detected, and the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), reactive oxygen species (ROS), PTEN, Akt, phosphorylated Akt (p-Akt) and Caspase-3 in H9C2 cells were also detected. Results Compared with the control group, the proliferation rate of H9C2 cell, and the levels of PTEN, Akt and p-Akt in other groups decreased, and the apoptosis rate, and the levels of LDH, MDA, ROS and Caspase-3 increased (P<0.05). Compared with the hypoxia/reoxygenation group, the proliferation rate of H9C2 cell, and the levels of PTEN, Akt and p-Akt in all GB dose groups and the carvedilol group increased; the apoptosis rate, and the levels of LDH, MDA, ROS and Caspase-3 decreased, and the effect of GB was in a dose dependent manner; however, the effect of GB was not as strong as carvedilol (P<0.05). Conclusion GB can inhibit H9C2 cell apoptosis and promote H9C2 cell proliferation by activating Caspase-3/PTEN/Akt pathway.
Objective To compare the effects of hypoxia-inducible drugs using deferoxamine (DFO) and accordion technique (AT) on activating the hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway to promote bone regeneration and remodelling during consolidation phase of distraction osteogenesis (DO). Methods Forty-five specific-pathogen-free adult male Sprague-Dawley (SD) rats were randomly divided into the control group, DFO group, and AT group, with 15 rats in each group. All rats underwent osteotomy to establish a right femur DO model. Then, continuous distraction was started for 10 days after 5 days of latency in each group. During the consolidation phase after distraction, no intervention was performed in the control group; DFO was locally perfused into the distraction area in the DFO group starting at the 3rd week of consolidation phase; cyclic stress stimulation was given in the AT group starting at the 3rd week of consolidation phase. The general condition of rats in each group was observed. X-ray films were conducted at the end of the distraction phase and at the 2nd, 4th, and 6th weeks of the consolidation phase to observe the calcification in the distraction area. At the 4th and 6th weeks of the consolidation phase, peripheral blood was taken for ELISA detection (HIF-1α, VEGF, CD31, and Osterix), femoral specimens were harvested for gross observation, histological staining (HE staining), and immunohistochemical staining [HIF-1α, VEGF, osteopontin (OPN), osteocalcin (OCN)]. At the 6th week of the consolidation phase, Micro-CT was used to observe the new bone mineral density (BMD), bone volume/tissue volume (BV/TV), trabecular separation (Tb.Sp), trabecular number (Tb.N), and trabecular thickness (Tb.Th) in the distraction area, and biomechanical test (ultimate load, elastic modulus, energy to failure, and stiffness) to detect bone regeneration in the distraction area. Results The rats in all groups survived until the termination of the experiment. ELISA showed that the contents of HIF-1α, VEGF, CD31, and Osterix in the serum of the AT group were significantly higher than those of the DFO group and control group at the 4th and 6th weeks of the consolidation phase (P<0.05). General observation, X-ray films, Micro-CT, and biomechanical test showed that bone formation in the femoral distraction area was significantly better in the DFO group and AT group than in the control group, and complete recanalization of the medullary cavity was achieved in the AT group, and BMD, BV/TV, Tb.Sp, Tb.N, and Tb.Th, as well as ultimate load, elastic modulus, energy to failure, and stiffness in the distraction area, were better in the AT group than in the DFO group and control group, and the differences were significant (P<0.05). HE staining showed that trabecular bone formation and maturation in the distraction area were better in the AT group than in the DFO group and control group. Immunohistochemical staining showed that at the 4th week of consolidation phase, the expression levels of HIF-1α, VEGF, OCN, and OPN in the distraction area of the AT group were significantly higher than those of the DFO group and control group (P<0.05); however, at 6th week of consolidation phase, the above indicators were lower in the AT group than in the DFO group and control group, but there was no significant difference between groups (P>0.05). Conclusion Both continuous local perfusion of DFO in the distraction area and AT during the consolidation phase can activate the HIF-1α/VEGF signaling pathway. However, AT is more effective than local perfusion of DFO in promoting the process of angiogenesis, osteogenesis, and bone remodelling.