On the basis of Poincare scatter plot and first order difference scatter plot, a novel heart rate variability (HRV) analysis method based on scatter plots of RR intervals and first order difference of RR intervals (namely, RdR) was proposed. The abscissa of the RdR scatter plot, the x-axis, is RR intervals and the ordinate, y-axis, is the difference between successive RR intervals. The RdR scatter plot includes the information of RR intervals and the difference between successive RR intervals, which captures more HRV information. By RdR scatter plot analysis of some records of MIT-BIH arrhythmias database, we found that the scatter plot of uncoupled premature ventricular contraction (PVC), coupled ventricular bigeminy and ventricular trigeminy PVC had specific graphic characteristics. The RdR scatter plot method has higher detecting performance than the Poincare scatter plot method, and simpler and more intuitive than the first order difference method.
Heart rate variability (HRV) is the difference between the successive changes in the heartbeat cycle, and it is produced in the autonomic nervous system modulation of the sinus node of the heart. The HRV is a valuable indicator in predicting the sudden cardiac death and arrhythmic events. Traditional analysis of HRV is based on a multi-electrocardiogram (ECG), but the ECG signal acquisition is complex, so we have designed an HRV analysis system based on photoplethysmography (PPG). PPG signal is collected by a microcontroller from human’s finger, and it is sent to the terminal via USB-Serial module. The terminal software not only collects the data and plot waveforms, but also stores the data for future HRV analysis. The system is small in size, low in power consumption, and easy for operation. It is suitable for daily care no matter whether it is used at home or in a hospital.
Calculation of linear parameters, such as time-domain and frequency-domain analysis of heart rate variability (HRV), is a conventional method for assessment of autonomic nervous system activity. Nonlinear phenomena are certainly involved in the genesis of HRV. In a seemingly random signal the Poincaré plot can easily demonstrate whether there is an underlying determinism in the signal. Linear and nonlinear analysis methods were applied in the computer words inputting experiments in this study for physiological measurement. This study therefore demonstrated that Poincaré plot was a simple but powerful graphical tool to describe the dynamics of a system.
At present, the potential hazards of infrasound on heart health have been identified in previous studies, but a comprehensive review of its mechanisms is still lacking. Therefore, this paper reviews the direct and indirect effects of infrasound on cardiac function and explores the mechanisms by which it may induce cardiac abnormalities. Additionally, in order to further study infrasound waves and take effective preventive measures, this paper reviews the mechanisms of cardiac cell damage caused by infrasound exposure, including alterations in cell membrane structure, modulation of electrophysiological properties, and the biological effects triggered by neuroendocrine pathways, and assesses the impact of infrasound exposure on public health.
The analysis parameters for the characterization of heart rate variability (HRV) within a very short time (<1 min) usually exhibit complicate variation patterns over time, which may easily interfere the judgment to the status of the cardiovascular system. In this study, long-term HRV sequence of 41 cases of healthy people (control group) and 25 cases of congestive heart failure (CHF) patients (experimental group) was divided into multiple segments of very short time series. The variation coefficient of the same HRV parameter under multiple segments of very short time series and the testing proportion with statistically significant differences under multiple interclass t-test were calculated. On this account, part of HRV analysis parameters under very short time were discussed to reveal the stability of difference of the cardiovascular system function under different status. Furthermore, with analyzing the receiver operating characteristic (ROC) curve and modeling the artificial neural network (ANN), the classification effects of these parameters between the control group and the experimental group were assessed. The results demonstrated that ① the indices of entropy of degree distribution based on the complex network analysis had a lowest variation coefficient and was sensitive to the pathological status (in 79.75% cases, there has statistically significant differences between the control group and experimental group), which can be served as an auxiliary index for clinical doctor to diagnose for CHF patient; ② after conducting ellipse fitting to Poincare plot, in 98.5% cases, there had statistically significant differences for the ratio of ellipse short-long axis (SDratio) between the control group and the experimental group; when modeling the ANN and solely adopting SDratio, the classification accuracy to the control group and experimental group was 71.87%, which demonstrated that SDratio might be acted as the intelligent diagnosis index for CHF patients; ③ however, more sensitive and robust indices were still needed to find out for the very-short HRV analysis and for the diagnosis of CHF patients as well.
The peak period of cardiovascular disease (CVD) is around the time of awakening in the morning, which may be related to the surge of sympathetic activity at the end of nocturnal sleep. This paper chose 140 participants as study object, 70 of which had occurred CVD events while the rest hadn’t during a two-year follow-up period. A two-layer model was proposed to investigate whether hypnopompic heart rate variability (HRV) was informative to distinguish these two types of participants. In the proposed model, the extreme gradient boosting algorithm (XGBoost) was used to construct a classifier in the first layer. By evaluating the feature importance of the classifier, those features with larger importance were fed into the second layer to construct the final classifier. Three machine learning algorithms, i.e., XGBoost, random forest and support vector machine were employed and compared in the second layer to find out which one can achieve the highest performance. The results showed that, with the analysis of hypnopompic HRV, the XGBoost+XGBoost model achieved the best performance with an accuracy of 84.3%. Compared with conventional time-domain and frequency-domain features, those features derived from nonlinear dynamic analysis were more important to the model. Especially, modified permutation entropy at scale 1 and sample entropy at scale 3 were relatively important. This study might have significance for the prevention and diagnosis of CVD, as well as for the design of CVD-risk assessment system.
Heart rate variability (HRV) is an important point to judge a person’s state in modern medicine. This paper is aimed to research a person’s fatigue level connected with vagal nerve based on the HRV using the improved Welch method. The process of this method is that it firstly uses a time window function on the signal to be processed, then sets the length of time according to the requirement, and finally makes frequency domain analysis. Compared with classical periodogram method, the variance and consistency of the present method have been improved. We can set time span freely using this method (at present, the time of international standard to measure HRV is 5 minutes). This paper analyses the HRV’s characteristics of fatigue crowd based on the database provided by PhysioNet. We therefore draw the conclusion that the accuracy of Welch analyzing HRV combining with appropriate window function has been improved enormously, and when the person changes to fatigue, the vagal activity is diminished and sympathetic activity is raised.
Heart rate is the most common index to directly monitor the level of physical stress by comparing the subject's heart rate with an appropriate "target heart rate" during exercise. However, heart rate only reveals the cardiac rhythm of the complex cardiovascular changes that take place during exercise. It is essential to get the dynamic response of the heart to exercise with various indices instead of only one single measurement. Based on the rest-workload alternating pattern, this paper screens the sensitive indices of exercise load from electrocardiogram (ECG) rhythm and waveform, including 4 time domain indices and 4 frequency domain indices of heart rate variability (HRV), 3 indices of waveform similarity and 2 indices of high frequency noise. In conclusion, RR interval (heart rate) is a reliable index for the realtime monitoring of exercise intensity, which has strong linear correlation with load intensity. The ECG waveform similarity and HRV indices are useful for the evaluation of exercise load.
Lorenz plot (LP) method which gives a global view of long-time electrocardiogram signals, is an efficient simple visualization tool to analyze cardiac arrhythmias, and the morphologies and positions of the extracted attractors may reveal the underlying mechanisms of the onset and termination of arrhythmias. But automatic diagnosis is still impossible because it is lack of the method of extracting attractors by now. We presented here a methodology of attractor extraction and recognition based upon homogeneously statistical properties of the location parameters of scatter points in three dimensional LP (3DLP), which was constructed by three successive RR intervals as X, Y and Z axis in Cartesian coordinate system. Validation experiments were tested in a group of RR-interval time series and tags data with frequent unifocal premature complexes exported from a 24-hour Holter system. The results showed that this method had excellent effective not only on extraction of attractors, but also on automatic recognition of attractors by the location parameters such as the azimuth of the points peak frequency (APF) of eccentric attractors once stereographic projection of 3DLP along the space diagonal. Besides, APF was still a powerful index of differential diagnosis of atrial and ventricular extrasystole. Additional experiments proved that this method was also available on several other arrhythmias. Moreover, there were extremely relevant relationships between 3DLP and two dimensional LPs which indicate any conventional achievement of LPs could be implanted into 3DLP. It would have a broad application prospect to integrate this method into conventional long-time electrocardiogram monitoring and analysis system.
Objective Explore the effect of remote ischemic preconditioning (RIPC) on preoperative heart rate variability in patients with heart valves. Methods From January 2022 to July 2022, screening was conducted among 118 patients based on inclusion/exclusion criteria. Fifty-eight patients were excluded, and 60 patients participated in this trial with informed consent and were randomly divided into a RIPC group (n=30) and a control group (n=30). Due to the cancellation of surgery, HRV data was missing. 7 patients in the control group were excluded, and 5 patients in the RIPC group were excluded, 23 patients in the final control group and 25 patients in the RIPC group were included in the analysis. Comparison of relevant indicators of heart rate variability (standard deviation of NN interval (SDNN), standard deviation of mean value of NN interval in every five minutes (SDANN), mean square root of difference between consecutive NN intervals (RMSSD), percentage of adjacent RR interval>50 ms (PNN50), low frequency component (LF), high frequency component (HF) and LF/HF) at 8 hours in the morning on the surgical day between two groups of patients. Results There was no statistical difference in baseline characteristics between the two groups, and there was no significant difference in heart rate variability 24 hours before intervention (P>0.05). After the intervention measures were taken, the comparison of the results of heart rate variability at 8 hours on the day of operation showed that SDNN and SDANN of patients in the RIPC group were higher than those in the control group, with statistical differences (P<0.05). Conclusion RIPC can stabilize the preoperative heart rate variability of patients undergoing cardiac valve surgery.