PURPOSE:To measure the epidermal growth factor (EGF)contents in vitreous and serum samples in normal subjects and patients with proliferative retinal diseases. METHODS: Using radioreceptor assay(RRA)to measure the EGF contents in vitreous and serum in patients with proliferative diabetic retinopathy (PDR) 16 cases, proliferative vitreoretinopathy (PVR) 20 cases, central retinal vein occlusion (CRVO)16 cases,other retinal vascular diseases 5 cases,and controls 10 cases. RESULTS:The EGF levels in vitreous of the patient group were apparently higher than those of the controls (Plt;0. 001). Among patient group,the EGF contents in vitrectomy fluid was lower than that of original vitreous, reflecting about 60~ 63~ EGF level in original vitreous, Both showed positive correlation. To compare the EGF contents in serum of patients and controls,the EGF contents in serum of PDR group increased significantly. In CRVO group the EGF contents also increased,while in PVR group,the EGF contents were lower than those of the controls. CONCLUSIONS: The increased EGF contents in vitreous of patient group may play a role in the pathogenesis of proliferative retinal diseases. The RRA is a sensitive method for quantitative measurement of growth factor. (Chin J Ocul Fundus Dis,1996,12: 91- 93)
Objective To observe the permeability and stability of the transfection of antisense oligonucleotide (ASODN) hybridized epidermal growth factor receptor (EGFR) to retinal glial cells (RG).Methods Phosphorothioate and unmodified EGFR ASODN conjugated with 5′-isothioc yanate (5′-FITC) were encapsulated with or without lipofectin, and then added into human retinal glial cells culture media. The cellular permeability and stability of the transfection were observed by fluorescence microscopy in fixed cells.Results In the absence of lipofectin, phosphorothioate and unmodified EGFR ASODN were found in a few RG cells at 30 minutes, and in about 50% RG cells at 4 hours. Phosphorothioate EGFR ASODN were kept in RG cells for 3-4 hours and disappeared at about 8 hours. In the presence of lipofectin, phosphoro thioate and unmodified EGFR ASODN were found in a few RG cells at 15 minutes and about 70%-80% RG cells at 4 hours. Phosphorothioate EGFR ASODN were kept in cells for 10-12 hours, and phosphorothioate and unmodified EGFR ASODN were disapp eared at about 14 hours and 4 hours respectively.Conclusion 5′-FITC EGFR ASODN encapsulated with lipofectin could enter RG cells and express stably in RG cells. (Chin J Ocul Fundus Dis,2003,19:52-54)
OBJECTIVE: To investigate the changes of fibroblast growth factor (FGF) in burn wounds. METHODS: The FGF expression in the center of wound granulation, the edge of wound, the healed part of wound, the normal skin of patients, and the heal course of second degree burn wounds were detected by immunohistochemical methods. RESULTS: The expression intensity of FGF was different in the different sites of third degree burn wounds. The highest contents of FGF was in the center granulation of burn wounds, the less was in the borderline of wound and healed skin, and the least was in the healed skin. FGF expression mainly concentrated in the middle layer of wound, and almost no FGF expression in normal skin. The most FGF expression was occurred at 14 days after injury in second degree of burn wound. CONCLUSION: The changes of FGF in wounds are closely related to the wound healing, and rational use of FGF can promote wound healing.
OBJECTIVE: To investigate the effect of nerve growth factor(NGF) on the burn wound healing and to study the mechanism of burn wound healing. METHODS: Six domestic pigs weighting around 20 kg were used as experimental animals. Twenty-four burn wound, each 2.5 cm in diameter, were induced on every pigs by scalding. Three different concentrations of NGF, 1 microgram/ml, 2.5 micrograms/ml, 5 micrograms/ml were topically applied after thermal injury, and saline solution used as control group. Biopsy specimens were taken at 3, 5 and 9 days following treatment and immunohistochemistry method was used to detect the epidermal growth factor(EGF), EGF receptor (EGF-R), NGF, NGF receptor (NGF-R), NGF, NGF-R, CD68 and CD3. RESULTS: The expression of EGF, EGF-R, NGF, NGF-R CD68 and CD3 were observed in the experimental group, especially at 5 and 9 days, no expression of those six items in the control group. CONCLUSION: NGF can not only act directly on burn wound, but also modulate other growth factors on the burn wound to accelerate the healing of burn wound.
Objective To study the release properties of basic fibroblast growth factor (bFGF) chitosan microspheres prepared by cross-linking-emulsion method using chitosan as a carrier material so as to lay a foundation for further study. Methods Using 0.6% sodium tripolyphosphate solution as a crosslinking agent and 1.5% solution of chitosan as a carrier material, bFGF chitosan microspheres were prepared by cross-linking-emulsion method. Laser particle size analyzer and Zeta electric potential analyzer were used to measure the particle diameter distribution, scanning electronic microscope to observe the morphology, and ELISA to determine the drug loading, the encapsulation rate, and the drug release properties. Results The particle size of bFGF chitosan microspheres ranged 20.312-24.152 μm. The microspheres were round with a smooth surface and uniform distribution, and it had no apparent porosity. The drug loading and encapsulation rate of microspheres were (7.57 ± 0.34) mg/g and 95.14% ± 1.58%, respectively. The bFGF chitosan microspheres could continuously release bFGF for 24 days; the bFGF level increased gradually with time and reached (820.45 ± 21.34) ng/mL at 24 days; and the microspheres had a burst effect, and the burst rate was 18.08%, and the accumulative release rate of the microspheres reached 82.05% during 24 days. Conclusion It is easy-to-operate to prepare the bFGF chitosan microspheres with the cross-linking-emulsion method. The bFGF chitosan microspheres have smooth surface, uniform distribution, and no apparent porosity.
Objective To observe the expression of p53, bcl-2 genes, vascular endothelial cell growth factor(VEGF), basic fibroblast growth factor(bFGF), insulin-like growth factor-I (IGF-I), and the receptors of these factors of retinal vascular endothelial cells (VECs) of 1- to 20-week diabetic rats, and the relationship between the expressions and cell cycle arrest.Methods Retinal sections of diabetic rats induced by alloxan were immunohistochemically stained and observed by light microscopy (LM) and electron microscopy (EM). Dot blotting and Western blotting were used to determine the expression of mRNA, proteins of p53 and bcl-2. Results Under LM, immunohistochemical positive expression of p53 and bcl-2 were found on the vessels of ganglion cell layer and inner nuclear layer of retinae of 8- to 20-week diabetic rats; under EM, these substances were observed depositing in VECs. The retinal VECs also expressed VEGF, bFGF, IGF-I and their receptors. There was no positive expression of other cell types in these retinae, all cell types of retinae in control group, or all cells of retinae of diabetic rats with the course of disease of 1 to 6 weeks. The result of dot blotting revealed that retinal tissue of 20-week diabetic rat expressed p53 and bcl-2 mRNA, and the result of Western blotting revealed that they also expressed p53 and bcl-2 proteins. But retinal tissues of control group did not. Positive expression of bax was not found in the retinae in control group or 1- to 20-week diabetic rats. Conclusion p53, bcl-2 may introduce cell cycle arrest of VECs of retinae in 8- to 20-week diabetic rats. High glucose might stimulate the expression of VEGF, bFGF, IGF-I and their receptors, and the growth factors may keep VECs surviving by self-secretion. (Chin J Ocul Fundus Dis,2003,19:29-33)
Objective To explore a new method of treating early avascular necrosis of femoral head (AVNFH). Methods Sixty-nine New Zealand adult rabbitswith a mean weight of 2.8 kg after AVNFH presenting were randomly divided into three groups. In group A, deproteinized bone(DPB) combined with the recombinant plasmid pcDNA3.1/vascular endothelial growth factor 165(VEGF165) was implanted in the drilled channel of the necrotic femoral head. In group B, only DPB was implanted. In group C, channel was drilled without DPB or plasmid implanted. Femoral head specimens were obtained 3 days, 1, 2, 4, 8 and 16 weeks after operation. The expression of VEGF165 was examined by RT-PCR, Western blot and immunohistochemical techniques. X-ray testedbone formation generally. Angiogenesis and repair of the femoral head were observed by histological and histomorphometric analysis. Results In group A, the expressions of VEGF165 mRNA and protein were detected 3 days postoperatively, reached apex 1 week and lasted more than 3 weeks after implantation. The ratios of IOD of collagen type Ⅰ were 0.29±0.11, 0.55±0.13 and 0.67±0.10 IOD/μm2 respectively at 2, 4 and 8 weeks postoperatively and the ratios of IOD of new capillary vessels were 0.33±0.10and 0.57±0.16 IOD/μm2 respectively at 2, 4 weeks postoperatively in group A, showing statistically significant difference (Plt;0.01) when compared with groups B and D. X-ray test indicated much bone callus formed early. Conclusion Transfection of the VEGF165 gene can enhance local angiogenesis at early stage andDPBVEGF165 compound can improve bone formation. Deproteinized bone combined with VEGF165 gene provides a potential method for therapy of osteonecrosis.
OBJECTIVE: To determine the influence of basic fibroblast growth factor (bFGF) on endothelial cell (EC) proliferation in vitro and its possible mechanisms, and to examine the effect of both TNP-470 and dexamethasone (Dex) on the EC proliferation induced by bFGF. METHODS: Human umbilical vein endothelial cells were cultured and the proliferation of EC was quantified by a colorimetric assay using MTT reagent. The expression of nuclear factor-kappa B (NF-kappa B) and ki-67 was detected with SABC immunohistochemical method. RESULTS: bFGF stimulated the EC proliferation and enhanced the expression of NF-kappa B and ki-67 in nucleus; TNP-470 and Dex suppressed EC proliferation induced by bFGF, and reduced the expression of NF-kappa B and ki-67 in nucleus. CONCLUSION: The above results indicate that the possible mechanisms of EC proliferation stimulated by bFGF come from that bFGF can activate NF-kappa B to promote the synthesis of DNA and EC mitosis. TNP-470 and Dex inhibited EC proliferation stimulated by bFGF by inhibiting NF-kappa B.
Objective To evaluate the effect of vascular endothelial growth factor (VEGF) on tumor angiogenesis, and its usage in tumor therapy.Methods The recent literatures about VEGF and angiogenesis were reviewed and analyzed. The advances of VEGF study were summarized. The effects of anti-angiogenesis in tumor biological therapy were introduced.Results Angiogenesis had been identified as an important factor for promoting tumor growth. VEGF was a basic and pivotal factor in tumor angiogenesis. The anti-angiogenesis treatments aimed at VEGF, including the applications of VEGF inhibitor and gene therapy of adenovirus medium, had got great progress. Conclusion VEGF is a leading factor of tumor angiogenesis, the anti-angiogenesis therapy aimed at VEGF has probably provided a new chance to malignant tumor treatment.
OBJECTIVE: To observe the effect of nerve growth factor (NGF) and nimodipine (NP) on fetal spinal cord graft in repair of injury of spinal cord. METHODS: A total of 144 adult Wistar rats were included in this study. All were made as the hemi-section cavity injury model at the lumbar enlargement and divided into three groups: fetal spinal cord graft (group Tr), fetal spinal cord graft with NGF (group TN), and fetal spinal cord graft with NGF and NP (group TNN). The intracellular concentration of free ionic calcium was measured at the 4th, 8th, and 24th hour, and superoxidase (SOD) and malondialdehyde (MDA) at 3rd, 6th, 12th, 24th and 72nd hour after operation. RESULTS: After spinal cord was injured, the concentration of MDA and intracellular concentration of free ionic calcium increased and reached to the peak at the 6th and 8th hour respectively, but SOD decreased and at 24th hour to its vale. The MDA was significantly lower in group TN than in group Tr, while the SOD was higher (P lt; 0.05). There was no significant difference on intracellular free ionic calcium concentration between group Tr and TN. The concentration of SOD of group TNN was the highest and the intracellular concentration of free ionic calcium was the lowest in the three groups (P lt; 0.05). The weekly mortality was 33%, 31%, 17% respectively in group Tr, TN and TNN. The mortality of group TNN was significantly lower than the other two groups (P lt; 0.01). CONCLUSION: Although the fetal spinal cord graft is an effective method to repair laboratory spinal cord injury, NGF and ND can interrupt secondary injury and increase survival rate of the host.