west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "functional magnetic resonance imaging" 20 results
  • Application of functional MRI in assessment of hepatic warm ischemia-reperfusion injury

    ObjectiveTo explore performances of functional magnetic resonance imaging (MRI) in evaluation of hepatic warm ischemia-reperfusion injury.MethodThe relative references about the principle of functional MRI and its application in the assessment of hepatic warm ischemia-reperfusion injury were reviewed and summarized.ResultsThe main functional MRI techniques for the assessment of hepatic warm ischemia-reperfusion injury included the diffusion weighted imaging (DWI), intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), blood oxygen level dependent (BOLD), dynamic contrast enhancement MRI (DCE-MRI), and T2 mapping, etc.. These techniques mainly used in the animal model with hepatic warm ischemia-reperfusion injury currently.ConclusionsFrom current results of researches of animal models, functional MRI is a non-invasive tool to accurately and quantitatively evaluate microscopic information changes of liver tissue in vivo. It can provide a useful information on further understanding of mechanism and prognosis of hepatic warm ischemia-reperfusion injury. With development of donation after cardiac death, functional MRI will play a more important role in evaluation of hepatic warm ischemia-reperfusion injury.

    Release date:2019-03-18 05:29 Export PDF Favorites Scan
  • Research Progress of Brain Functional Magnetic Resonance Imaging in Post-traumatic Stress Disorder

    Post-traumatic stress disorder (PTSD) is a mental disorder causing great distress to individuals, families and even society, and there is not yet effective way of unified prevention and treatment up till now. Lots of neuroimaging techniques, however, such as the magnetic resonance imaging, are widely used to the study of the pathogenesis of PTSD with the development of medical imaging. Functional magnetic resonance imaging (fMRI) can be applied to detect the abnormalities not only of the brain morphology but also of the function of various cerebral areas and neural circuit, and plays an important role in studying the pathogenesis of psychiatric diseases. In this paper, we mainly review the task-related and resting-state functional magnetic resonance imaging studies of the PTSD, and finally suggest possible directions for future research.

    Release date: Export PDF Favorites Scan
  • An ALFF study using resting-state functional MRI in patients at high risk for sudden unexpected death in epilepsy

    ObjectiveSeizure-related respiratory or cardiac dysfunction was once thought to be the direct cause of sudden unexpected death in epilepsy (SUDEP), but both may be secondary to postictal cerebral inhibition. An important issue that has not been explored to date is the neural network basis of cerebral inhibition. Our aim was to investigate the features of neural networks in patients at high risk for SUDEP using a blood oxygen level-dependent (BOLD) resting-state functional MRI (Rs-fMRI) technique. MethodsRs-fMRI data were recorded from 13 patients at high risk for SUDEP and 12 patients at low risk for SUDEP. The amplitude of low-frequency fluctuations (ALFF) values were compared between the two groups to decipt the regional brain activities. ResultsCompared with patients at low risk for SUDEP, patients at high risk exhibited significant ALFF reductions in the right superior frontal gyrus, the left superior orbital frontal gyrus, the left insula and the left thalamus; and ALFF increase in the right middle cigulum gyrus, the right supplementary motor area and the left thalamus. ConclusionsThese findings highlight the need to understand the fundamental neural network dysfunction in SUDEP, which may fill the missing link between seizure-related cardiorespiratory dysfunction and SUDEP, and provide a promising neuroimaging biomarker for risk prediction of SUDEP.

    Release date:2017-01-22 09:09 Export PDF Favorites Scan
  • Abnormal spontaneous brain functional activity in adult patients with amblyopia: a resting-state functional magnetic resonance imaging study

    Amblyopia is a visual development deficit caused by abnormal visual experience in early life, mainly manifesting as defected visual acuity and binocular visual impairment, which is considered to reflect abnormal development of the brain rather than organic lesions of the eye. Previous studies have reported abnormal spontaneous brain activity in patients with amblyopia. However, the location of abnormal spontaneous activity in patients with amblyopia and the association between abnormal brain function activity and clinical deficits remain unclear. The purpose of this study is to analyze spontaneous brain functional activity abnormalities in patients with amblyopia and their associations with clinical defects using resting-state functional magnetic resonance imaging (fMRI) data. In this study, 31 patients with amblyopia and 31 healthy controls were enrolled for resting-state fMRI scanning. The results showed that spontaneous activity in the right angular gyrus, left posterior cerebellum, and left cingulate gyrus were significantly lower in patients with amblyopia than in controls, and spontaneous activity in the right middle temporal gyrus was significantly higher in patients with amblyopia. In addition, the spontaneous activity of the left cerebellum in patients with amblyopia was negatively associated with the best-corrected visual acuity of the amblyopic eye, and the spontaneous activity of the right middle temporal gyrus was positively associated with the stereoacuity. This study found that adult patients with amblyopia showed abnormal spontaneous activity in the angular gyrus, cerebellum, middle temporal gyrus, and cingulate gyrus. Furthermore, the functional abnormalities in the cerebellum and middle temporal gyrus may be associated with visual acuity defects and stereopsis deficiency in patients with amblyopia. These findings help explain the neural mechanism of amblyopia, thus promoting the improvement of the treatment strategy for amblyopia.

    Release date:2022-10-25 01:09 Export PDF Favorites Scan
  • Research on brain network for schizophrenia classification based on resting-state functional magnetic resonance imaging

    How to extract high discriminative features that help classification from complex resting-state fMRI (rs-fMRI) data is the key to improving the accuracy of brain disease recognition such as schizophrenia. In this work, we use a weighted sparse model for brain network construction, and utilize the Kendall correlation coefficient (KCC) to extract the discriminative connectivity features for schizophrenia classification, which is conducted with the linear support vector machine. Experimental results based on the rs-fMRI of 57 schizophrenia patients and 64 healthy controls show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 81.82%) than other competing methods. Specifically, compared with the traditional network construction methods (Pearson’s correlation and sparse representation) and the commonly used feature selection methods (two-sample t-test and Least absolute shrinkage and selection operator (Lasso)), the algorithm proposed in this paper can more effectively extract the discriminative connectivity features between the schizophrenia patients and the healthy controls, and further improve the classification accuracy. At the same time, the discriminative connectivity features extracted in the work could be used as the potential clinical biomarkers to assist the identification of schizophrenia.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • Research development of real-time functional magnetic resonance imaging neuro-feedback technology based on brain network connectivity

    The emergence of real-time functional magnetic resonance imaging (rt-fMRI) has provided foundations for neurofeedback based on brain hemodynamics and has given the new opportunity and challenge to cognitive neuroscience research. Along with the study of advanced brain neural mechanisms, the regulation goal of rt-fMRI neurofeedback develops from the early specific brain region activity to the brain network connectivity more accordant with the brain functional activities, and the study of the latter may be a trend in the area. Firstly, this paper introduces basic principle and development of rt-fMRI neurofeedback. Then, it specifically discusses the current research status of brain connectivity neurofeedback technology, including research approaches, experimental methods, conclusions, and so on. Finally, it discusses the problems in this field in the future development.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Study of Functional Magnetic Resonance Imaging at Resting State for Patients in Sub-health Status

    This study sought to reveal the difference of brain functions at resting-state between subjects with sub-health and normal controls by using the functional magnetic resonance imaging (fMRI) technology. Resting-state fMRI scans were performed on 24 subjects of sub-health and on 24 healthy controls with gender, age and education matched with the sub-health persons. Compared to the healthy controls, the sub-health group showed significantly higher regional homogeneity (ReHo) in the left post-central gyrus and the right post-central gyrus. On the other hand, the sub-health group showed significantly lower ReHo in the left superior frontal gyrus, in the right anterior cingulated cortex and ventra anterior cingulate gyrus, in the left dorsolateral frontal gyrus, and in the right middle temporal gyrus. The Significant difference in ReHo suggests that thebsub-health persons have abnormalities in certain brain regions. It is proved that its specific action and meaning deserves further assessment.

    Release date: Export PDF Favorites Scan
  • Altered spontaneous brain activity in mesial temporal lobe epilepsy with unilateral hippocampal sclerosis: a meta-analysis of resting-state functional magnetic resonance imaging

    Objective To identify the most consistent and replicable characteristics of altered spontaneous brain activity in mesial temporal lobe epilepsy patients with unilateral hippocampal sclerosis (MTLE-HS). Methods A systematic literature search was performed in PubMed, Embase, The Cochrane Library, China National Knowledge Infrastructure, Wanfang, and CQVIP databases, to identify eligible whole-brain resting state functional magnetic resonance imaging studies that had measured differences in amplitude of low-frequency fluctuations or fractional amplitude of low-frequency fluctuations between patients with MTLE-HS and healthy controls from January 2000 to January 2019. After literature screening and data extraction, Anisotropic Effect-Size Signed Differential Mapping software was used for voxel based pooled meta-analysis. Results Nine datasets from six studies were finally included, which contained 207 MTLE-HS patients and 239 healthy controls. The results demonstrated that, compared with the healthy controls, the MTLE-HS patients showed increased spontaneous brain activity in right hippocampus and parahippocampal gyrus, right superior temporal gyrus, left cingulate gyrus, right fusiform gyrus, and right inferior temporal gyrus; while decreased spontaneous brain activity in left superior frontal gyrus, right angular gyrus, right middle frontal gyrus, left inferior parietal lobule, left precuneus, and right cerebellum (P<0.005, cluster extent≥10). Conclusion The current meta-analysis demonstrates that patients with MTLE-HS show increased spontaneous brain activity in lateral and mesial temporal regions and decreased spontaneous brain activity in default mode network, which preliminarily clarifies the characteristics of altered spontaneous brain activity in patients with MTLE-HS.

    Release date:2019-11-25 04:42 Export PDF Favorites Scan
  • Advances in migraine without aura based on resting-state functional MRI

    Migraine is the most common primary headache clinically, with high disability rate and heavy burden. Functional MRI (fMRI) plays a significant role in the study of migraine. This article reviews the main advances of migraine without aura (MwoA) based on resting-state fMRI in recent years, including the exploration of the mechanism of fMRI in the occurrence and development of MwoA in terms of regional functional activities and functional network connections, as well as the research progress of the potential clinical application of fMRI in aiding diagnosis and assessing treatment effect for MwoA. At last, this article summarizes the current distresses and prospects of fMRI research on MwoA.

    Release date:2024-06-24 02:56 Export PDF Favorites Scan
  • The Impact of Mood on the Intrinsic Functional Connectivity

    Although a great number of studies have investigated the changes of resting-state functional connectivity (rsFC) in patients with mental disorders, such as depression and schizophrenia etc, little is known how stable the changes are, and whether temporal sad or happy mood can modulate the intrinsic rsFC. In our experiments, happy and sad video clips were used to induce temporally happy and sad mood states in 20 healthy young adults. We collected functional magnetic resonance imaging (fMRI) data while participants were watching happy or sad video clips, which were administrated in two consecutive days. Seed-based functional connectivity analyses were conducted using the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), and amygdala as seeds to investigate neural network related to executive function, attention, and emotion. We also investigated the association of the rsFC changes with emotional arousability level to understand individual differences. There is significantly stronger functional connectivity between the left DLPFC and posterior cingulate cortex (PCC) under sad mood than that under happy mood. The increased connectivity strength was positively correlated with subjects' emotional arousability. The increased positive correlation between the left DLPFC and PCC under sad relative to happy mood might reflect an increased processing of negative emotion-relevant stimuli. The easier one was induced by strong negative emotion (higher emotional arousability), the greater the left DLPFC-PCC connectivity was indicated, the greater the instability of the intrinsic rsFC was shown.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content