west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "finite element" 83 results
  • Effects of different alveolar bone finite element models on the biomechanical responses of periodontal ligament

    In the study of oral orthodontics, the dental tissue models play an important role in finite element analysis results. Currently, the commonly used alveolar bone models mainly have two kinds: the uniform and the non-uniform models. The material of the uniform model was defined with the whole alveolar bone, and each mesh element has a uniform mechanical property. While the material of the elements in non-uniform model was differently determined by the Hounsfield unit (HU) value of computed tomography (CT) images where the element was located. To investigate the effects of different alveolar bone models on the biomechanical responses of periodontal ligament (PDL), a clinical patient was chosen as the research object, his mandibular canine, PDL and two kinds of alveolar bone models were constructed, and intrusive force of 1 N and moment of 2 Nmm were exerted on the canine along its root direction, respectively, which were used to analyze the hydrostatic stress and the maximal logarithmic principal strain of PDL under different loads. Research results indicated that the mechanical responses of PDL had been affected by alveolar bone models, no matter the canine translation or rotation. Compared to the uniform model, if the alveolar bone was defined as the non-uniform model, the maximal stress and strain of PDL were decreased by 13.13% and 35.57%, respectively, when the canine translation along its root direction; while the maximal stress and strain of PDL were decreased by 19.55% and 35.64%, respectively, when the canine rotation along its root direction. The uniform alveolar bone model will induce orthodontists to choose a smaller orthodontic force. The non-uniform alveolar bone model can better reflect the differences of bone characteristics in the real alveolar bone, and more conducive to obtain accurate analysis results.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Construction and Analysis of a Finite Element Model of Human L4-5 Lumbar Segment

    In the present study, a finite element model of L4-5 lumbar motion segment was established based on the CT images and a combination with image processing software, and the analysis of lumbar biomechanical characteristics was conducted on the proposed model according to different cases of flexion, extension, lateral bending and axial rotation. Firstly, the CT images of lumbar segment L4 to L5 from a healthy volunteer were selected for a three dimensional model establishment which was consisted of cortical bone, cancellous bone, posterior structure, annulus, nucleus pulposus, cartilage endplate, ligament and facet joint. The biomechanical analysis was then conducted according to different cases of flexion, extension, lateral bending and axial rotation. The results showed that the established finite element model of L4-5 lumbar segment was realistic and effective. The axial displacement of the proposed model was 0.23, 0.47, 0.76 and 1.02 mm, respectively under the pressure of 500, 1 000, 1 500 and 2 000 N, which was similar to the previous studies in vitro experiments and finite element analysis of other people under the same condition. The stress distribution of the lumbar spine and intervertebral disc accorded with the biomechanical properties of the lumbar spine under various conditions. The established finite element model has been proved to be effective in simulating the biomechanical properties of lumbar spine, and therefore laid a good foundation for the research of the implants of biomechanical properties of lumbar spine.

    Release date: Export PDF Favorites Scan
  • Study on Finite Element Analysis Method for the Pre-operative Planning of Bernese Periacetabular Osteotomy

    We developed a three-dimensional finite element model of development dysplasia of hip (DDH) of a patient. And then we performed virtual Bernese periacetabular osteotomy (PAO) by rotating the acetabular bone with different angle so as to increase femoral head coverage and distribute the contact pressure over the cartilage surface. Using finite element analysis method, we analyzed contact area, contact pressure, and von Mises stress in the acetabular cartilage to determine the effect of various rotation angle. We also built a normal hip joint model. Compared to the normal hip joint model, the DDH models showed stress concentration in the acetabular edge, and higher stress values. Compared to the DDH models, the post-PAO models showed decreases in the maximum values of von Mises stress and contact pressure while we increased the contact area. An optimal position could be achieved for the acetabulum that maximizes the contact area while minimizing the contact pressure and von Mises stress in the acetabular cartilage. These would provide theoretical bases to pre-operative planning.

    Release date:2017-01-17 06:17 Export PDF Favorites Scan
  • Establishment of finite element model of varus-type ankle arthritis and biomechanical analysis of different correction models for tibial anterior surface angle

    Objective To establish the finite element model of varus-type ankle arthritis and to implement the finite element mechanical analysis of different correction models for tibial anterior surface angle (TAS) in supramalleolar osteotomy. Methods A female patient with left varus-type ankle arthritis (Takakura stage Ⅱ, TAS 78°) was taken as the study object. Based on the CT data, the three-dimensional model of varus-type ankle arthritis (TAS 78°) and different TAS correction models [normal (TAS 89°), 5° valgus (TAS 94°), and 10° valgus (TAS 99°)] were created by software Mimics 21.0, Geomagic Wrap 2021, Solidworks 2017, and Workbench 17.0. The 290 N vertical downward force was applied to the upper surface of the tibia and 60 N vertical downward force to the upper surface of the fibula. Von Mises stress distribution and stress peak were calculated. Results The finite element model of normal TAS was basically consistent with biomechanics of the foot. According to biomechanical analysis, the maximum stress of the varus model appeared in the medial tibiotalar joint surface and the medial part of the top tibiotalar joint surface. The stress distribution of talofibular joint surface and the lateral part of the top tibiotalar joint surface were uniform. In the normal model, the stress distributions of the talofibular joint surface and the tibiotalar joint surface were uniform, and no obvious stress concentration was observed. The maximum stress in the 5° valgus model appeared at the posterior part of the talofibular joint surface and the lateral part of the top tibiotalar joint surface. The stress distribution of medial tibiotalar joint surface was uniform. The maximum stress of the 10° valgus model appeared at the posterior part of the talofibular joint surface and the lateral part of the top tibiotalar joint surface. The stress on the medial tibiotalar joint surface increased. Conclusion With the increase of valgus, the stress of ankle joint gradually shift outwards, and the stress concentration tends to appear. There was no obvious obstruction of fibula with 10° TAS correction. However, when TAS correction exceeds 10° and continues to increase, the obstruction effect of fibula becomes increasingly significant.

    Release date:2023-07-12 09:34 Export PDF Favorites Scan
  • Finite Element Analysis of Effect of Key Dimension of Nitinol Stent on Its Fatigue Behaviour

    To evaluate the fatigue behavior of nitinol stents, we used the finite element method to simulate the manufacture processes of nitinol stents, including expanding, annealing, crimping, and releasing procedure in applications of the clinical treatments. Meanwhile, we also studied the effect of the crown area dimension of stent on strain distribution. We then applied a fatigue diagram to investigate the fatigue characteristics of nitinol stents. The results showed that the maximum strain of all three stent structures, which had different crown area dimensions under vessel loads, located at the transition area between the crown and the strut, but comparable deformation appeared at the inner side of the crown area center. The cause of these results was that the difference of the area moment of inertia determined by the crown dimension induced the difference of strain distribution in stent structure. Moreover, it can be drawn from the fatigue diagrams that the fatigue performance got the best result when the crown area dimension equaled to the intermediate value. The above results proved that the fatigue property of nitinol stent had a close relationship with the dimension of stent crown area, but there was no positive correlation.

    Release date: Export PDF Favorites Scan
  • A finite element analysis of petal-shaped poly-axial locking plate fixation in treatment of Y-shaped patellar fracture

    Objective To establish the finite element model of Y-shaped patellar fracture fixed with titanium-alloy petal-shaped poly-axial locking plate and to implement the finite element mechanical analysis. Methods The three-dimensional model was created by software Mimics 19.0, Rhino 5.0, and 3-Matic 11.0. The finite element analysis was implemented by ANSYS Workbench 16.0 to calculate the Von-Mises stress and displacement. Before calculated, the upper and lower poles of the patella were constrained. The 2.0, 3.5, and 4.4 MPa compressive stresses were applied to the 1/3 patellofemoral joint surface of the lower, middle, and upper part of the patella respectively, and to simulated the force upon patella when knee flexion of 20, 45, and 90°. Results The number of nodes and elements of the finite element model obtained was 456 839 and 245 449, respectively. The max value of Von-Mises stress of all the three conditions simulated was 151.48 MPa under condition simulating the knee flexion of 90°, which was lower than the yield strength value of the titanium-alloy and patella. The max total displacement value was 0.092 8 mm under condition simulating knee flexion of 45°, which was acceptable according to clinical criterion. The stress concentrated around the non-vertical fracture line and near the area where the screws were sparse. Conclusion The titanium-alloy petal-shaped poly-axial locking plate have enough biomechanical stiffness to fix the Y-shaped patellar fracture, but the result need to be proved in future.

    Release date:2017-12-11 12:15 Export PDF Favorites Scan
  • Three-dimensional Finite Element Analysis to T-shaped Fracture of Pelvis in Sitting Position

    We developed a three-dimensional finite element model of the pelvis. According to Letournel methods, we established a pelvis model of T-shaped fracture with its three different fixation systems, i.e. double column reconstruction plates, anterior column plate combined with posterior column screws and anterior column plate combined with quadrilateral area screws. It was found that the pelvic model was effective and could be used to simulate the mechanical behavior of the pelvis. Three fixation systems had great therapeutic effect on the T-shaped fracture. All fixation systems could increase the stiffness of the model, decrease the stress concentration level and decrease the displacement difference along the fracture line. The quadrilateral area screws, which were drilled into cortical bone, could generate beneficial effect on the T-type fracture. Therefore, the third fixation system mentioned above (i.e. the anterior column plate combined with quadrilateral area screws) has the best biomechanical stability to the T-type fracture.

    Release date: Export PDF Favorites Scan
  • Simulation method of skull remodellingsurgeryfor infant with craniosynostosis

    Craniofacial malformation caused by premature fusion of cranial suture of infants has a serious impact on their growth. The purpose of skull remodeling surgery for infants with craniosynostosis is to expand the skull and allow the brain to grow properly. There are no standardized treatments for skull remodeling surgery at the present, and the postoperative effect can be hardly assessed reasonably. Children with sagittal craniosynostosis were selected as the research objects. By analyzing the morphological characteristics of the patients, the point cloud registration of the skull distortion region with the ideal skull model was performed, and a plan of skull cutting and remodeling surgery was generated. A finite element model of the infant skull was used to predict the growth trend after remodeling surgery. Finally, an experimental study of surgery simulation was carried out with a child with a typical sagittal craniosynostosis. The evaluation results showed that the repositioning and stitching of bone plates effectively improved the morphology of the abnormal parts of the skull and had a normal growth trend. The child’s preoperative cephalic index was 65.31%, and became 71.50% after 9 months’ growth simulation. The simulation of the skull remodeling provides a reference for surgical plan design. The skull remodeling approach significantly improves postoperative effect, and it could be extended to the generation of cutting and remodeling plans and postoperative evaluations for treatment on other types of craniosynostosis.

    Release date:2021-12-24 04:01 Export PDF Favorites Scan
  • Three-dimensional finite element model construction and biomechanical analysis of customized titanium alloy lunate prosthesis

    Objective To design customized titanium alloy lunate prosthesis, construct three-dimensional finite element model of wrist joint before and after replacement by finite element analysis, and observe the biomechanical changes of wrist joint after replacement, providing biomechanical basis for clinical application of prosthesis. Methods One fresh frozen human forearm was collected, and the maximum range of motions in flexion, extension, ulnar deviation, and radialis deviation tested by cortex motion capture system were 48.42°, 38.04°, 35.68°, and 26.41°, respectively. The wrist joint data was obtained by CT scan and imported into Mimics21.0 software and Magics21.0 software to construct a wrist joint three-dimensional model and design customized titanium alloy lunate prosthesis. Then Geomagic Studio 2017 software and Solidworks 2017 software were used to construct the three-dimensional finite element models of a normal wrist joint (normal model) and a wrist joint with lunate prosthesis after replacement (replacement model). The stress distribution and deformation of the wrist joint before and after replacement were analyzed for flexion at and 15°, 30°, 48.42°, extension at 15°, 30°, and 38.04°, ulnar deviation at 10°, 20°, and 35.68°, and radial deviation at 5°, 15°, and 26.41° by the ANSYS 17.0 finite element analysis software. And the stress distribution of lunate bone and lunate prosthesis were also observed. Results The three-dimensional finite element models of wrist joint before and after replacement were successfully constructed. At different range of motion of flexion, extension, ulnar deviation, and radial deviation, there were some differences in the number of nodes and units in the grid models. In the four directions of flexion, extension, ulnar deviation, and radial deviation, the maximum deformation of wrist joint in normal model and replacement model occurred in the radial side, and the values increased gradually with the increase of the range of motion. The maximum stress of the wrist joint increased gradually with the increase of the range of motion, and at maximum range of motion, the stress was concentrated on the proximal radius, showing an overall trend of moving from the radial wrist to the proximal radius. The maximum stress of normal lunate bone increased gradually with the increase of range of motion in different directions, and the stress position also changed. The maximum stress of lunate prosthesis was concentrated on the ulnar side of the prosthesis, which increased gradually with the increase of the range of motion in flexion, and decreased gradually with the increase of the range of motion in extension, ulnar deviation, and radialis deviation. The stress on prosthesis increased significantly when compared with that on normal lunate bone. Conclusion The customized titanium alloy lunate prosthesis does not change the wrist joint load transfer mode, which provided data support for the clinical application of the prosthesis.

    Release date:2023-07-12 09:34 Export PDF Favorites Scan
  • Three-dimensional finite element analysis of Swanson prosthesis-arthroplasty of the first metatarsophalangeal joint combined with osteotomy and bone grafting of the first metatarsal bone for hallux valgus

    Objective To analyze the biomechanical changes of hallux valus after Swanson prosthesis-arthroplasty of the 1st metatarsophalangeal joint combined with osteotomy and bone grafting of the 1st metatarsal bone by three-dimensional finite element analysis, so as to provide data basis for studying the changes of foot morphology and physiological function after hallux valus correction surgery. Methods A 65-year-old female patient with severe hallux valus admitted in January 2013 was selected as the research object. The CT data of the right foot was obtained, and the three-dimensional finite element models before and after Swanson prosthesis-arthroplasty of the 1st metatarsophalangeal joint combined with osteotomy and bone grafting of the 1st metatarsal bone were established by Mimics10.01, Geomagic Studio, and ANSYS12.0 software. ANSYS 12.0 software was used for nonlinear static stress analysis, and the hallux valgus angle (HVA), the intermetatarsal angle (IMA), and the von Mises stress distributions of the forefoot plantar surface and the 1st to 5th metatarsal bones were observed before and after operation. ResultsThe HVA and IMA were 56.3° and 16.3° before operation and 9.2° and 9.8° after operation, respectively. Before operation, the stress on the forefoot was the largest in the 4th metatarsal head zone and the smallest in the 1st metatarsal head zone; the stress on the medial side of the forefoot was significantly smaller than that on the lateral side, and the center of forefoot pressure was located on the lateral side. After operation, the stress on the forefoot was the largest in the 1st metatarsal head zone and the smallest in the 5th metatarsal head zone; the stress on the lateral side of the forefoot was significantly smaller than that on the medial side, and the center of forefoot pressure was located on the medial side. Before operation, the stress of the 5th metatarsal bone was the largest, and the 1st metatarsal bone was the smallest. After operation, the stress of the 1st metatarsal bone was the largest, and the 4th metatarsal bone was the smallest. Conclusion Swanson prosthesis-arthroplasty of the 1st metatarsophalangeal joint combined with osteotomy and bone grafting of the 1st metatarsal bone can effectively correct hallux valgus and make HVA, IMA, and plantar pressure distribution close to normal. However, postoperative stresses of the 1st to 5th metatarsal bones elevate, which may lead to associated complications.

    Release date:2022-09-30 09:59 Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content