Objective To investigate the role and mechanism of S100 calcium binding protein B (S100B) in osteoarthritis (OA) cartilage damage repair. Methods Twenty New Zealand rabbits were randomly divided into control group and model group, with 10 rabbits in each group. Rabbits in the model group were injured by the right knee joint immobilization method to make the artilage injury model, while the control group did not deal with any injury. After 4 weeks, the levels of interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) in synovial fluid were detected by ELISA method; the mRNA and protein expressions of S100B, fibroblast growth factor 2 (FGF-2), and FGF receptor 1 (FGFR1) in cartilage tissue were examined by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot assay. Human synovial fibroblasts (SF) were isolated and cultured in vitro. The effects of S100B overexpression and knockdown on the levels of IL-1β and TNF-α (ELISA method) and the expressions of FGF-2 and FGFR1 gene (qRT-PCR) and protein (Western blot) were observed. Moreover, the effects of FGFR1 knockdown in above S100 overexpression system on the levels of IL-1β and TNF-α (ELISA method) and the expressions of FGF-2 and FGFR1 gene (qRT-PCR) and protein (Western blot) were observed. Results ELISA detection showed that the expressions of IL-1β and TNF-α in the synovial fluid of the model group were significantly higher than those of the control group (P<0.05); qRT-PCR and Western blot detection showed that the mRNA and protein expressions of S100B, FGF-2, and FGFR1 in cartilage tissue were significantly higher than those of the control group (P<0.05). Overexpression and knockdown S100 could respectively significantly increase and decrease lipopolysaccharides (LPS) induced IL-1β and TNF-α levels elevation and the mRNA and protein expressions of FGF-2 and FGFR1 (P<0.05); whereas FGFR1 knockdown could significantly decrease LPS induced IL-1β and TNF-α levels elevation and the mRNA and protein expressions of FGF-2 and FGFR1 (P<0.05). Conclusion S100B protein can regulate the inflammatory response of SF and may affect the repair of cartilage damage in OA, and the mechanism may be related to the activation of FGF-2/FGFR1 signaling pathway.
ObjectiveTo summarize the latest research progress and related mechanisms of cancer-associated fibroblasts (CAFs) in invasion, metastasis and drug resistance of breast cancer, so as to seek the best treatment strategy for patients with breast cancer metastasis and drug resistance. MethodThe literatures about CAFs research in breast cancer in recent years were searched and summarized. ResultsCAFs was the main stromal cell in tumor microenvironment (TME). By changing TME, the biological characteristics of CAFs could be changed and the growth and invasion of breast cancer cells could be induced. CAFs in breast cancer promotes the invasion and metastasis of breast cancer cells by interacting with inflammatory factors and promoting the formation of pre-transplantation ecosystems, and CAFs also mediates chemotherapy resistance to breast cancer, target resistance, endocrine resistance, and radiation resistance through the secretion of various cellular factors. ConclusionsAt present, some progress has been made in the research of CAFs in breast cancer, but there is still a certain gap to clinical application CAFs has a variety of functional phenotypes, so it is necessary to identify and characterize specific CAFs subtypes when studying new anti-CAFs therapeutic strategies. It has been proved that CAFs has great potential as a specific target for breast cancer treatment, but CAFs still lacks specific biomarkers. Therefore, an in-depth understanding of the biological characteristics and heterogeneity of CAFs can provide a reliable theoretical basis for developing drugs targeting CAFs.
Objective To investigate whether human amniotic mesenchymal stem cells (hAMSCs) have the characteristics of mesenchymal stem cells (MSCs) and the differentiation capacity into ligament fibroblastsin vitro. Methods The hAMSCs were separated through trypsin and collagenase digestion from placenta, the phenotypic characteristics of hAMSCs were detected by flow cytometry, the cytokeratin-19 (CK-19) and vimentin expression of hAMSCs were tested through immunofluorescence staining. The hAMSCs at the 3rd passage were cultured with L-DMEM/F12 medium containing transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor (VEGF) as the experimental group and with single L-DMEM/F12 medium as the control group. The morphology of hAMSCs was observed by inverted phase contrast microscope; the cellular activities and ability of proliferation were examined by cell counting kit-8 (CCK-8) method; the ligament fibroblasts related protein expressions including collagen type I, collagen type III, Fibronectin, and Tenascin-C were detected by immunofluorescence staining; specific mRNA expressions of ligament fibroblasts and angiogenesis including collagen type I, collagen type III, Fibronectin, α-smooth muscle actin (α-SMA), and VEGF were measured by real-time fluorescence quantitative PCR. Results The hAMSCs presented monolayer and adherent growth under inverted phase contrast microscope; the flow cytometry results demonstrated that hAMSCs expressed the MSCs phenotypes; the immunofluorescence staining results indicated the hAMSCs had high expression of the vimentin and low expression of CK-19; the hAMSCs possessed the differentiation ability into the osteoblasts, chondroblasts, and lipoblasts. The CCK-8 results displayed that cells reached the peak of growth curve at 7 days in each group, and the proliferation ability in the experimental group was significantly higher than that in the control group at 7 days (P<0.05). The immunofluorescence staining results showed that the expressions of collagen type I, collagen type III, Fibronectin, and Tenascin-C in the experimental group were significantly higher than those in the control group at 5, 10, and15 days after culture (P<0.05). The real-time fluorescence quantitative PCR results revealed that the mRNA relative expressions had an increasing tendency at varying degrees with time in the experimental group (P<0.05). The relative mRNA expressions of collagen type I, collagen type III, Fibronectin, α-SMA, and VEGF in the experimental group were significantly higher than those in the control group at the other time points (P<0.05), but no significant difference was found in the relative mRNA expressions of collagen type I, collagen type III, and VEGF between 2 groups at 5 days (P>0.05). Conclusion The hAMSCs possesses the characteristics of MSCs and good proliferation ability which could be chosen as seed cell source in tissue engineering. The expressions of ligament fibroblasts and angiogenesis related genes could be up-regulated, after inductionin vitro, and the synthesis of ligament fibroblasts related proteins could be strengthened. In addition, the application of TGF-β1 and VEGF could be used as growth factors sources in constructing tissue engineered ligament.
ObjectiveTo investigate the effect of Wnt5a derived from tumor-associated fibroblasts (CAFs) on the migration and invasion of gastric cancer cells. MethodsThe differentially expressed genes Wnt5a between CAFs and normal gastric fibroblasts (NGFs) in gastric cancer tissues and their corresponding normal gastric tissues using the GEO database GSE194261 dataset were screened. Immunohistochemical method was used to detect the expression of Wnt5a protein in tissue samples of clinical gastric cancer patients, and the relationship between Wnt5a protein expression and clinicopathological features of gastric cancer was analyzed. CAFs and NGFs were extracted from fresh surgical specimens of gastric cancer patients, and the expression of Wnt5a in CAFs was detected by real-time fluorescence quantitative-polymerase chain reaction and Western blot experiment. Transwell invasion and migration experiment was used to observe the effects of CAFs, inhibition of Wnt5a expression in CAFs and different concentrations of recombinant Wnt5a protein on the migration and invasion ability of gastric cancer MGC-803 and MKN-28 cell lines in vitro. ResultsThrough the screening of GEO database GSE194261 data set, it was found that Wnt5a was more expressed in CAFs than NGFs (P<0.05). Immunohistochemical results showed that the expression of Wnt5a protein in gastric cancer tissues was significantly stronger than that in normal gastric tissues (P<0.05), and the expression of Wnt5a protein was related to T stage of tumor (χ2=5.035, P<0.05), but not related to gender, age, degree of tumor differentiation, lymph node metastasis, vascular invasion and nerve invasion (P>0.05). Inhibiting Wnt5a derived from CAFs could inhibit the invasion and migration of gastric cancer cells. By stimulating gastric cancer cells with different concentrations of human recombinant Wnt5a protein, it was found that when the concentration of human recombinant Wnt5a protein was greater than 100 ng/mL, the invasion and migration abilities of MGC-803 and MKN-28 gastric cancer cells were significantly increased (P<0.05). ConclusionWnt5a is highly expressed in CAFs derived from the interstitial tissue of gastric cancer, which is related to the invasion depth of gastric cancer and can promote the invasion and migration of gastric cancer cells.
ObjectiveTo investigate the effects of adipose-derived stem cell released exosomes (ADSC-Exos) on wound healing in diabetic mice.MethodsThe ADSCs were isolated from the adipose tissue donated by the patients and cultured by enzymatic digestion. The supernatant of the 3rd generation ADSCs was used to extract Exos (ADSC-Exos). The morphology of ADSC-Exos was observed by transmission electron microscopy. The membrane-labeled proteins (Alix and CD63) were detected by Western blot, and the particle size distribution was detected by nanoparticle tracking analyzer. The fibroblasts were isolated from the skin tissue donated by the patients and cultured by enzymatic digestion. The 5th generation fibroblasts were cultured with PKH26-labeled ADSC-Exos, and observed by confocal fluorescence microscopy. The effects of ADSC-Exos on proliferation and migration of fibroblasts were observed with cell counting kit 8 (CCK-8) and scratch method. Twenty-four 8-week-old Balb/c male mice were used to prepare a diabetic model. A full-thickness skin defect of 8 mm in diameter was prepared on the back. And 0.2 mL of ADSC-Exos and PBS were injected into the dermis of the experimental group (n=12) and the control group (n=12), respectively. On the 1st, 4th, 7th, 11th, 16th, and 21st days, the wound healing was observed and the wound healing rate was calculated. On the 7th, 14th, and 21st days, the histology (HE and Masson) and CD31 immunohistochemical staining were performed to observe the wound structure, collagen fibers, and neovascularization.ResultsADSC-Exos were the membranous vesicles with clear edges and uniform size; the particle size was 40-200 nm with an average of 102.1 nm; the membrane-labeled proteins (Alix and CD63) were positive. The composite culture observation showed that ADSC-Exos could enter the fibroblasts and promote the proliferation and migration of fibroblasts. Animal experiments showed that the wound healing of the experimental group was significantly faster than that of the control group, and the wound healing rate was significantly different at each time point (P<0.05). Compared with the control group, the wound healing of the experimental group was better. There were more microvessels in the early healing stage, and more deposited collagen fibers in the late healing stage. There were significant differences in the length of wound on the 7th, 14th, and 21st days, the number of microvessels on the 7th and 14th days, and the rate of deposited collagen fibers on the 14th and 21st days between the two groups (P<0.05).ConclusionADSC-Exos can promote the wound healing in diabetic mice by promoting angiogenesis and proliferation and migration of fibroblasts and collagen synthesis.
Objective Through analyzing BKCa channel expression in atrial fibroblasts in patients with sinus rhythm and atrial fibrillation (AF), to explore the mechanism of myocardial fibrosis and provide new therapeutic strategies for the treatment and reversal of AF structure reconstruction. Methods We selected 10 patients of rheumatic heart valvular disease who underwent valve replacement surgery. They were 5 patients with sinus rhythm (a sinus rhythm group, 2 males and 3 females with an average age of 49.1±8.3 years) and 5 with AF (an AF group, 3 males and 2 females with an average age of 50.3±5.8 years). About 100 mg tissue was obtained from the right auricula dextra, and the atrial fibroblasts were cultured by tissue block adherence method, and the expression of BKCa channel genes and proteins in cultured fibroblasts was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting methods. Results (1) The general data of 10 patients between the AF group and the sinus rhythm group were compared. There was no significant difference between the two groups in age (t=1.21, P=0.67) and sex (t=2.56, P=0.75). There was statistical difference in the left atrial diameter and the right atrium diameter between the two groups (t=19.45, P=0.01; t=23.52, P=0.06); (2) the mRNA expression of BKCa subunit was detected by qRT-PCR method, and there was no significant difference in the mRNA expression of BKCa α and BKCa β1 between the two groups (t=3.14, P=0.79; t=2.88, P=0.69); (3) the expression of BKCa protein was detected by western blotting method, and there was no significant difference in the protein expression of BKCa α and BKCa β1 between the two groups (t=0.55, P=0.31; t=0.73, P=0.46). Conclusion BKCa pathway may not be involved in the pathogenesis and maintenance of AF, but it may play an important role in the process of myocardial fibrosis.
Objective To study the biocompatibility of tendon mixedextraction of bovine collagen(tMEBC) and to explore the feasibility of using the threedimensional framework as periodontal tissue engineering scaffold. Methods After being prepared, the tMEBC were cultured with the P4P6 of human periodontal ligament fibroblasts (HPDLFs) in vitro. Threedimensional framework was prepared from bovine tendon. The P4-P6 of HPDLFs (with an initial density of 5×106 cells/ml) were cultured in vitro. Cell attachment andproliferation were measured by cell counting 1 day, 3,5, and 10 days after cell seeding. Histological examination was performed with light microscope and scanning electron microscope 5 and 10 days after cell seeding. Results Porous structure, which supported the proliferation and attachment of HPDLFs, was found in tMEBC. The density of cell increased from 0.556×104 cells/ml 24 hours after cell seeding to 3.944×104 cells/ml 10 days after seeding. Light and scanning electron microscope examinationindicated that HPDLFs were attached and extended on the three-dimensional scaffolds and were well embedded in the newly formed tissue matrix. ConclusiontMEBC has good biocompatibility with the HPDLFs, and can be used as scaffold for cell transplantation in periodontal tissue engineering.
ObjectiveTo optimize the culture method of human primary pancreatic ductal adenocarcinoma (PDAC) cells and cancer associated fibroblasts (CAFs) and investigate the effect of CAFs on the growth of primary PDAC cells in vitro and tumor formation in patient-derived xenograft (PDX) model.MethodsThe PDAC specimens were collected and primarily cultured. In order to observe the effect of CAFs on the growth of primary PDAC cells in vitro, the CAFs were co-cultured with primary PDAC cells consistently and the alone cultured primary PDAC cells served as the control. Then, these cells were injected into the shoulder blades of NOG mice in order to develop the PDX model.ResultsWhen the primary PDAC cells separated from the CAFs, the proliferation capacity of the primary PDAC decreased rapidly in the passage culture in vitro, and the most cells were terminated within 5 generations. By contrast, when the CAFs co-cultured with the primary PDAC cells, the proliferation capacity of primary PDAC cells were preserved, which could be stably transferred to at least 10 generations. The tumors of NOG mice were detected during 2–3 weeks after injecting the mixed cells (primary PDAC plus CAFs), while had no tumor formation after injecting CAFs alone. The rate of tumor was 92.9% (13 cases) in the primary PDAC plus CAFs group, which was higher than that of the CAFs alone group (64.3%, 9 cases), but there was no statistical difference because of the small sample size. The volume of tumor in the primary PDAC plus CAFs group at 2, 4, 6, and 8 weeks after the tumor cells injection was significantly larger than that in the CAFs alone group at the corresponding time point, the differences were statistically significant (P<0.01).ConclusionsThe CAFs could promote the growth of primary PDAC cells in vitro. This new method of co-culture CAFs with primary PDAC could improve the success rate of primary PDAC cells culture and improve the success rate of PDX model in NOG mice.
ObjectiveTo explore if Smad7 protein can inhibit growth of keloids by observing the gene and protein expressions of Smad7, collagen type Ⅰ, and collagen type Ⅲ and cell proliferation after over-expression vectors of Smad7 transfecting keloid fibroblasts (KFb). MethodsFibroblasts were acquired from 10 male patient with keloids at the age of 20 to 25 years. After in vitro culture, KFb were divided into 3 groups: untransfected group (group A), pcDNA3.1 (-) transfected group (group B), and pcDNA3.1 (-)-smad7 transfected group (group C). The mRNA and protein expression levels of Smad7, collagen type Ⅰ, and collagen type Ⅲ were detected by real-time fluorescence quantitative PCR and Western blot at 48 hours after transfection. The cell proliferation ability was detected by MTT assay at 24 hours after transfection. ResultsThe relative expression levels of mRNA and protein of Smad7 in group C were significantly higher than those in group A and group B (P < 0.01). The relative expression levels of mRNA and protein of collagen type Ⅰ and collagen type Ⅲ in group C were significantly lower than those in group A and group B (P < 0.01). The relative expression levels of mRNA of collagen type Ⅰ and collagen type Ⅲ in group B were significantly higher than those in group A (P < 0.01); and the relative expression levels of proteins of Smad7, collagen type Ⅰ, and collagen type Ⅲ were significantly lower than those in group A (P < 0.01). The cell proliferation ability in group C was significantly lower than that in group A and group B at each time point by MTT assay (P < 0.05), but no difference was found between group A and group B (P>0.05). ConclusionGene expressions of collagen type Ⅰ, and collagen type Ⅲ and cell proliferation will be inhibited after KFb are transfected by over-expression vector of Smad7.
Objective To establish a safe, effective, and economic feeder-free culture system which is suitable for the culture of human parthenogenetic embryonic stem cells (hPESCs) in vitro. Methods hPESCs were cultured with mTeSRTMl medium (control group) and human foreskin fibroblasts-conditional medium (hFFs-CM) (experimental group). The growth status of hPESCs in both feeder-free culture systems were observed with inverted microscope. Alkaline phosphatase (ALP) analysis and karyotype analysis were used to study the biological characteristics of hPESCs. The expression of hPESCs pluripotent marker Oct-4 was analyzed by RT-PCR. Differentiation experiment in vivo and in vitro was applied to observe the differentiation potential of hPESCs into three germ layers. Results hPESCs had regular morphology with difficulty in differentiation in both culture systems. No obvious difference was observed in morphology and expansion speed of hPESCs between 2 groups. After subcultured for 15 passages in vitro, hPESCs in 2 groups could maintain normal female diploid karyotype 46, XX and pluripotency. The expression of Oct-4 mRNA was positive in 2 groups. hPESCs in 2 groups could form embryonic body in differentiation experiment in vitro and could develop into teratomas containing three germ layers in nude mice. Conclusion Feeder-free culture system of hFFs-CM can sustain the growth of hPESCs and keep hPESCs undifferentiated state for long. A feeder-free culture system of hPESCs is successfully established, which can support the growth of hPESCs, reduce the contamination from animals, decrease the cost of culture, and satisfy the clinical large-scale application.