west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "feature extraction" 32 results
  • Detection of microcalcification clusters regions in mammograms combining discriminative deep belief networks

    In order to overcome the shortcomings of high false positive rate and poor generalization in the detection of microcalcification clusters regions, this paper proposes a method combining discriminative deep belief networks (DDBNs) to automatically and quickly locate the regions of microcalcification clusters in mammograms. Firstly, the breast region was extracted and enhanced, and the enhanced breast region was segmented to overlapped sub-blocks. Then the sub-block was subjected to wavelet filtering. After that, DDBNs model for breast sub-block feature extraction and classification was constructed, and the pre-trained DDBNs was converted to deep neural networks (DNN) using a softmax classifier, and the network is fine-tuned by back propagation. Finally, the undetected mammogram was inputted to complete the location of suspicious lesions. By experimentally verifying 105 mammograms with microcalcifications from the Digital Database for Screening Mammography (DDSM), the method obtained a true positive rate of 99.45% and a false positive rate of 1.89%, and it only took about 16 s to detect a 2 888 × 4 680 image. The experimental results showed that the algorithm of this paper effectively reduced the false positive rate while ensuring a high positive rate. The detection of calcification clusters was highly consistent with expert marks, which provides a new research idea for the automatic detection of microcalcification clusters area in mammograms.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Review on identity feature extraction methods based on electroencephalogram signals

    Biometrics plays an important role in information society. As a new type of biometrics, electroencephalogram (EEG) signals have special advantages in terms of versatility, durability, and safety. At present, the researches on individual identification approaches based on EEG signals draw lots of attention. Identity feature extraction is an important step to achieve good identification performance. How to combine the characteristics of EEG data to better extract the difference information in EEG signals is a research hotspots in the field of identity identification based on EEG in recent years. This article reviewed the commonly used identity feature extraction methods based on EEG signals, including single-channel features, inter-channel features, deep learning methods and spatial filter-based feature extraction methods, etc. and explained the basic principles application methods and related achievements of various feature extraction methods. Finally, we summarized the current problems and forecast the development trend.

    Release date:2022-02-21 01:13 Export PDF Favorites Scan
  • Detection of inferior myocardial infarction based on densely connected convolutional neural network

    Inferior myocardial infarction is an acute ischemic heart disease with high mortality, which is easy to induce life-threatening complications such as arrhythmia, heart failure and cardiogenic shock. Therefore, it is of great clinical value to carry out accurate and efficient early diagnosis of inferior myocardial infarction. Electrocardiogram is the most sensitive means for early diagnosis of inferior myocardial infarction. This paper proposes a method for detecting inferior myocardial infarction based on densely connected convolutional neural network. The method uses the original electrocardiogram (ECG) signals of serially connected Ⅱ, Ⅲ and aVF leads as the input of the model and extracts the robust features of the ECG signals by using the scale invariance of the convolutional layers. The characteristic transmission of ECG signals is enhanced by the dense connectivity between different layers, so that the network can automatically learn the effective features with strong robustness and high recognition, so as to achieve accurate detection of inferior myocardial infarction. The Physikalisch Technische Bundesanstalt diagnosis public ECG database was used for verification. The accuracy, sensitivity and specificity of the model reached 99.95%, 100% and 99.90%, respectively. The accuracy, sensitivity and specificity of the model are also over 99% even though the noise exists. Based on the results of this study, it is expected that the method can be introduced in the clinical environment to help doctors quickly diagnose inferior myocardial infarction in the future.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • A Novel Method of Multi-channel Feature Extraction Combining Multivariate Autoregression and Multiple-linear Principal Component Analysis

    Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups ofⅣ_ⅢandⅣ_Ⅰ. The experimental results proved that the method proposed in this paper was feasible.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • A review on multi-modal human motion representation recognition and its application in orthopedic rehabilitation training

    Human motion recognition (HAR) is the technological base of intelligent medical treatment, sports training, video monitoring and many other fields, and it has been widely concerned by all walks of life. This paper summarized the progress and significance of HAR research, which includes two processes: action capture and action classification based on deep learning. Firstly, the paper introduced in detail three mainstream methods of action capture: video-based, depth camera-based and inertial sensor-based. The commonly used action data sets were also listed. Secondly, the realization of HAR based on deep learning was described in two aspects, including automatic feature extraction and multi-modal feature fusion. The realization of training monitoring and simulative training with HAR in orthopedic rehabilitation training was also introduced. Finally, it discussed precise motion capture and multi-modal feature fusion of HAR, as well as the key points and difficulties of HAR application in orthopedic rehabilitation training. This article summarized the above contents to quickly guide researchers to understand the current status of HAR research and its application in orthopedic rehabilitation training.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Primary central nervous system lymphoma and glioblastoma image differentiation based on sparse representation system

    It is of great clinical significance in the differential diagnosis of primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) because there are enormous differences between them in terms of therapeutic regimens. In this paper, we propose a system based on sparse representation for automatic classification of PCNSL and GBM. The proposed system distinguishes the two tumors by using of the different texture detail information of the two tumors on T1 contrast magnetic resonance imaging (MRI) images. First, inspired by the process of radiomics, we designed a dictionary learning and sparse representation-based method to extract texture information, and with this approach, the tumors with different volume and shape were transformed into 968 quantitative texture features. Next, aiming at the problem of the redundancy in the extracted features, feature selection based on iterative sparse representation was set up to select some key texture features with high stability and discrimination. Finally, the selected key features are used for differentiation based on sparse representation classification (SRC) method. By using ten-fold cross-validation method, the differentiation based on the proposed approach presents accuracy of 96.36%, sensitivity 96.30%, and specificity 96.43%. Experimental results show that our approach not only effectively distinguish the two tumors but also has strong robustness in practical application since it avoids the process of parameter extraction on advanced MRI images.

    Release date:2018-10-19 03:21 Export PDF Favorites Scan
  • Research Progress of Automatic Sleep Staging Based on Electroencephalogram Signals

    The research of sleep staging is not only a basis of diagnosing sleep related diseases but also the precondition of evaluating sleep quality, and has important clinical significance. In recent years, the research of automatic sleep staging based on computer has become a hot spot and got some achievements. The basic knowledge of sleep staging and electroencephalogram (EEG) is introduced in this paper. Then, feature extraction and pattern recognition, two key technologies for automatic sleep staging, are discussed in detail. Wavelet transform and Hilbert-Huang transform, two methods for feature extraction, are compared. Artificial neural network and support vector machine (SVM), two methods for pattern recognition are discussed. In the end, the research status of this field is summarized, and development trends of next phase are pointed out.

    Release date: Export PDF Favorites Scan
  • Resting-state electroencephalogram classification of patients with schizophrenia or depression

    The clinical manifestations of patients with schizophrenia and patients with depression not only have a certain similarity, but also change with the patient's mood, and thus lead to misdiagnosis in clinical diagnosis. Electroencephalogram (EEG) analysis provides an important reference and objective basis for accurate differentiation and diagnosis between patients with schizophrenia and patients with depression. In order to solve the problem of misdiagnosis between patients with schizophrenia and patients with depression, and to improve the accuracy of the classification and diagnosis of these two diseases, in this study we extracted the resting-state EEG features from 100 patients with depression and 100 patients with schizophrenia, including information entropy, sample entropy and approximate entropy, statistical properties feature and relative power spectral density (rPSD) of each EEG rhythm (δ, θ, α, β). Then feature vectors were formed to classify these two types of patients using the support vector machine (SVM) and the naive Bayes (NB) classifier. Experimental results indicate that: ① The rPSD feature vector P performs the best in classification, achieving an average accuracy of 84.2% and a highest accuracy of 86.3%; ② The accuracy of SVM is obviously better than that of NB; ③ For the rPSD of each rhythm, the β rhythm performs the best with the highest accuracy of 76%; ④ Electrodes with large feature weight are mainly concentrated in the frontal lobe and parietal lobe. The results of this study indicate that the rPSD feature vector P in conjunction with SVM can effectively distinguish depression and schizophrenia, and can also play an auxiliary role in the relevant clinical diagnosis.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
  • Tensor Feature Extraction Using Multi-linear Principal Component Analysis for Brain Computer Interface

    The brain computer interface (BCI) can be used to control external devices directly through electroencephalogram (EEG) information. A multi-linear principal component analysis (MPCA) framework was used for the limitations of tensor form of multichannel EEG signals processing based on traditional principal component analysis (PCA) and two-dimensional principal component analysis (2DPCA). Based on MPCA, we used the projection of tensor-matrix to achieve the goal of dimensionality reduction and features exaction. Then we used the Fisher linear classifier to classify the features. Furthermore, we used this novel method on the BCI competitionⅡdataset 4 and BCI competitionⅣdataset 3 in the experiment. The second-order tensor representation of time-space EEG data and the third-order tensor representation of time-space-frequency EEG data were used. The best results that were superior to those from other dimensionality reduction methods were obtained by much debugging on parameter P and testQ. For two-order tensor, the highest accuracy rates could be achieved as 81.0% and 40.1%, and for three-order tensor, the highest accuracy rates were 76.0% and 43.5%, respectively.

    Release date: Export PDF Favorites Scan
  • Image Feature Extraction and Discriminant Analysis of Xinjiang Uygur Medicine Based on Color Histogram

    Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.

    Release date: Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content