west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "deep learning" 51 results
  • Progress in computer-assisted Alberta stroke program early computer tomography score of acute ischemic stroke based on different modal images

    Clinically, non-contrastive computed tomography (NCCT) is used to quickly diagnose the type and area of ​​stroke, and the Alberta stroke program early computer tomography score (ASPECTS) is used to guide the next treatment. However, in the early stage of acute ischemic stroke (AIS), it’s difficult to distinguish the mild cerebral infarction on NCCT with the naked eye, and there is no obvious boundary between brain regions, which makes clinical ASPECTS difficult to conduct. The method based on machine learning and deep learning can help physicians quickly and accurately identify cerebral infarction areas, segment brain areas, and operate ASPECTS quantitative scoring, which is of great significance for improving the inconsistency in clinical ASPECTS. This article describes current challenges in the field of AIS ASPECTS, and then summarizes the application of computer-aided technology in ASPECTS from two aspects including machine learning and deep learning. Finally, this article summarizes and prospects the research direction of AIS-assisted assessment, and proposes that the computer-aided system based on multi-modal images is of great value to improve the comprehensiveness and accuracy of AIS assessment, which has the potential to open up a new research field for AIS-assisted assessment.

    Release date:2021-10-22 02:07 Export PDF Favorites Scan
  • Progress in abdominal aortic aneurysm based on artificial intelligence and radiomics

    Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.

    Release date:2022-09-20 01:53 Export PDF Favorites Scan
  • Current situation and prospect of artificial intelligence in the diagnosis and treatment of gastrointestinal tumors using image deep learning

    ObjectiveTo summarize the application status of artificial intelligence (AI) in the diagnosis and treatment of gastrointestinal tumors using image deep learning, as well as its application prospect. MethodLiteratures on AI in the field of gastrointestinal tumors in recent years were reviewed and summarized.ResultsAI had developed rapidly in the medical field. The gastrointestinal endoscopy, imaging examination, and pathological diagnosis assisted by AI technology could assist doctors to make more accurate diagnosis opinions, and make the diagnosis and treatment of gastrointestinal tumors develop towards a more accurate and efficient direction. However, the application of AI in the medical field had just begun, and it still needed to be popularized for a long time.ConclusionThe gastrointestinal endoscopy system, imaging examination system, and pathological diagnosis assisted by AI technology all show high specificity and sensitivity, which obviously reflects its high efficiency and accuracy.

    Release date:2021-11-30 02:39 Export PDF Favorites Scan
  • Deep learning for accurate lung artery segmentation with shape-position priors

    ObjectiveTo propose a lung artery segmentation method that integrates shape and position prior knowledge, aiming to solve the issues of inaccurate segmentation caused by the high similarity and small size differences between the lung arteries and surrounding tissues in CT images. MethodsBased on the three-dimensional U-Net network architecture and relying on the PARSE 2022 database image data, shape and position prior knowledge was introduced to design feature extraction and fusion strategies to enhance the ability of lung artery segmentation. The data of the patients were divided into three groups: a training set, a validation set, and a test set. The performance metrics for evaluating the model included Dice Similarity Coefficient (DSC), sensitivity, accuracy, and Hausdorff distance (HD95). ResultsThe study included lung artery imaging data from 203 patients, including 100 patients in the training set, 30 patients in the validation set, and 73 patients in the test set. Through the backbone network, a rough segmentation of the lung arteries was performed to obtain a complete vascular structure; the branch network integrating shape and position information was used to extract features of small pulmonary arteries, reducing interference from the pulmonary artery trunk and left and right pulmonary arteries. Experimental results showed that the segmentation model based on shape and position prior knowledge had a higher DSC (82.81%±3.20% vs. 80.47%±3.17% vs. 80.36%±3.43%), sensitivity (85.30%±8.04% vs. 80.95%±6.89% vs. 82.82%±7.29%), and accuracy (81.63%±7.53% vs. 81.19%±8.35% vs. 79.36%±8.98%) compared to traditional three-dimensional U-Net and V-Net methods. HD95 could reach (9.52±4.29) mm, which was 6.05 mm shorter than traditional methods, showing excellent performance in segmentation boundaries. ConclusionThe lung artery segmentation method based on shape and position prior knowledge can achieve precise segmentation of lung artery vessels and has potential application value in tasks such as bronchoscopy or percutaneous puncture surgery navigation.

    Release date:2025-02-28 06:45 Export PDF Favorites Scan
  • Research on development trends of multimodal fusion for medical image classification

    This review systematically analyzes recent research progress in multimodal fusion techniques for medical imaging classification, focusing on various fusion strategies and their effectiveness in classification tasks. Studies indicate that multimodal fusion methods significantly enhance classification performance and demonstrate potential in clinical decision support. However, challenges remain, including insufficient dataset sharing, limited utilization of text modalities, and inadequate integration of fusion strategies with medical knowledge. Future efforts should focus on developing large-scale public datasets and optimizing deep fusion strategies for image and text modalities to promote broader application in medical scenarios.

    Release date:2025-07-17 01:33 Export PDF Favorites Scan
  • Applications of generative adversarial networks in medical image processing

    In recent years, researchers have introduced various methods in many domains into medical image processing so that its effectiveness and efficiency can be improved to some extent. The applications of generative adversarial networks (GAN) in medical image processing are evolving very fast. In this paper, the state of the art in this area has been reviewed. Firstly, the basic concepts of the GAN were introduced. And then, from the perspectives of the medical image denoising, detection, segmentation, synthesis, reconstruction and classification, the applications of the GAN were summarized. Finally, prospects for further research in this area were presented.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
  • Progress of artificial intelligence in endoscopic diagnosis of superficial esophageal squamous carcinoma and precancerous lesions

    Esophageal cancer is a serious threat to the health of Chinese people. The key to solve this problem is early diagnosis and early treatment, and the most important method is endoscopic screening. The rapid development of artificial intelligence (AI) technology makes its application and research in the field of digestive endoscopy growing, and it is expected to become the "right-hand man" for endoscopists in the early diagnosis of esophageal cancer. Currently, the application of multimodal and multifunctional AI systems has achieved good performance in the diagnosis of superficial esophageal squamous cell carcinoma and precancerous lesions. This study summarized and reviewed the research progress of AI in the diagnosis of superficial esophageal squamous cell carcinoma and precancerous lesions, and also explored its development direction in the future.

    Release date:2022-09-20 08:57 Export PDF Favorites Scan
  • Research progress of auxiliary diagnosis classification algorithm for lung tumor imaging

    The classification of lung tumor with the help of computer-aided diagnosis system is very important for the early diagnosis and treatment of malignant lung tumors. At present, the main research direction of lung tumor classification is the model fusion technology based on deep learning, which classifies the multiple fusion data of lung tumor with the help of radiomics. This paper summarizes the commonly used research algorithms for lung tumor classification, introduces concepts and technologies of machine learning, radiomics, deep learning and multiple data fusion, points out the existing problems and difficulties in the field of lung tumor classification, and looks forward to the development prospect and future research direction of lung tumor classification.

    Release date:2022-07-28 10:21 Export PDF Favorites Scan
  • Automatic segmentation of head and neck organs at risk based on three-dimensional U-NET deep convolutional neural network

    The segmentation of organs at risk is an important part of radiotherapy. The current method of manual segmentation depends on the knowledge and experience of physicians, which is very time-consuming and difficult to ensure the accuracy, consistency and repeatability. Therefore, a deep convolutional neural network (DCNN) is proposed for the automatic and accurate segmentation of head and neck organs at risk. The data of 496 patients with nasopharyngeal carcinoma were reviewed. Among them, 376 cases were randomly selected for training set, 60 cases for validation set and 60 cases for test set. Using the three-dimensional (3D) U-NET DCNN, combined with two loss functions of Dice Loss and Generalized Dice Loss, the automatic segmentation neural network model for the head and neck organs at risk was trained. The evaluation parameters are Dice similarity coefficient and Jaccard distance. The average Dice Similarity coefficient of the 19 organs at risk was 0.91, and the Jaccard distance was 0.15. The results demonstrate that 3D U-NET DCNN combined with Dice Loss function can be better applied to automatic segmentation of head and neck organs at risk.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Application of deep learning in cancer prognosis prediction model

    In recent years, deep learning has provided a new method for cancer prognosis analysis. The literatures related to the application of deep learning in the prognosis of cancer are summarized and their advantages and disadvantages are analyzed, which can be provided for in-depth research. Based on this, this paper systematically reviewed the latest research progress of deep learning in the construction of cancer prognosis model, and made an analysis on the strengths and weaknesses of relevant methods. Firstly, the construction idea and performance evaluation index of deep learning cancer prognosis model were clarified. Secondly, the basic network structure was introduced, and the data type, data amount, and specific network structures and their merits and demerits were discussed. Then, the mainstream method of establishing deep learning cancer prognosis model was verified and the experimental results were analyzed. Finally, the challenges and future research directions in this field were summarized and expected. Compared with the previous models, the deep learning cancer prognosis model can better improve the prognosis prediction ability of cancer patients. In the future, we should continue to explore the research of deep learning in cancer recurrence rate, cancer treatment program and drug efficacy evaluation, and fully explore the application value and potential of deep learning in cancer prognosis model, so as to establish an efficient and accurate cancer prognosis model and realize the goal of precision medicine.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
6 pages Previous 1 2 3 ... 6 Next

Format

Content