west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "clustering" 18 results
  • Resting-state electroencephalogram relevance state recognition of Parkinson’s disease based on dynamic weighted symbolic mutual information and k-means clustering

    At present, the incidence of Parkinson’s disease (PD) is gradually increasing. This seriously affects the quality of life of patients, and the burden of diagnosis and treatment is increasing. However, the disease is difficult to intervene in early stage as early monitoring means are limited. Aiming to find an effective biomarker of PD, this work extracted correlation between each pair of electroencephalogram (EEG) channels for each frequency band using weighted symbolic mutual information and k-means clustering. The results showed that State1 of Beta frequency band (P = 0.034) and State5 of Gamma frequency band (P = 0.010) could be used to differentiate health controls and off-medication Parkinson’s disease patients. These findings indicated that there were significant differences in the resting channel-wise correlation states between PD patients and healthy subjects. However, no significant differences were found between PD-on and PD-off patients, and between PD-on patients and healthy controls. This may provide a clinical diagnosis reference for Parkinson’s disease.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • A Modeling Method for Human Standing Balance System Based on T-S Fuzzy Identification

    In order to develop safe training intensity and training methods for the passive balance rehabilitation training system, we propose in this paper a mathematical model for human standing balance adjustment based on T-S fuzzy identification method. This model takes the acceleration of a multidimensional motion platform as its inputs, and human joint angles as its outputs. We used the artificial bee colony optimization algorithm to improve fuzzy C-means clustering algorithm, which enhanced the efficiency of the identification for antecedent parameters. Through some experiments, the data of 9 testees were collected, which were used for model training and model results validation. With the mean square error and cross-correlation between the simulation data and measured data, we concluded that the model was accurate and reasonable.

    Release date: Export PDF Favorites Scan
  • Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm

    Sleep stage scoring is a hotspot in the field of medicine and neuroscience. Visual inspection of sleep is laborious and the results may be subjective to different clinicians. Automatic sleep stage classification algorithm can be used to reduce the manual workload. However, there are still limitations when it encounters complicated and changeable clinical cases. The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data. In the proposed improved K-means clustering algorithm, points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm. Meanwhile, the cluster centers were updated according to the 'Three-Sigma Rule' during the iteration to abate the influence of the outliers. The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure (CPAP) treatment. The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%. With the analysis of morphological diversity of sleep data, it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.

    Release date:2016-10-24 01:24 Export PDF Favorites Scan
  • A New Method to Segment Multiple Sclerosis Lesions Using Multispectral Magnetic Resonance Images

    Magnetic resonance (MR) images can be used to detect lesions in the brains of patients with multiple sclerosis (MS). An automatic method is presented for segmentation of MS lesions using multispectral MR images in this paper. Firstly, a Pd-w image is subtracted from its corresponding T1-w images to get an image in which the cerebral spinal fluid (CSF) is enhanced. Secondly, based on kernel fuzzy c-means clustering (KFCM) algorithm, the enhanced image and the corresponding T2-w image are segmented respectively to extract the CSF region and the CSF-MS lesions combinatoin region. A raw MS lesions image is obtained by subtracting the CSF region from CSF-MS region. Thirdly, based on applying median filter and thresholding to the raw image, the MS lesions were detected finally. Results were tested on BrainWeb images and evaluated with Dice similarity coefficient (DSC), sensitivity (Sens), specificity (Spec) and accuracy (Acc). The testing results were satisfactory.

    Release date: Export PDF Favorites Scan
  • Cell data clustering method in flow cytometry based on kernel principal component analysis

    The process of multi-parametric flow cytometry data analysis is complicate and time-consuming, which requires well-trained professionals to operate on. To overcome this limitation, a method for multi-parameter flow cytometry data processing based on kernel principal component analysis (KPCA) was proposed in this paper. The dimensionality of the data was reduced by nonlinear transform. After the new characteristic variables were obtained, automatical clustering can be achieved using improvedK-means algorithm. Experimental data of peripheral blood lymphocyte were processed using the principal component analysis (PCA)-based method and KPCA-based method and then the influence of different feature parameter selections was explored. The results indicate that the KPCA can be successfully applied in the multi-parameter flow cytometry data analysis for efficient and accurate cell clustering, which can improve the efficiency of flow cytometry in clinical diagnosis analysis.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Left ventricle segmentation in echocardiography based on adaptive mean shift

    The use of echocardiography ventricle segmentation can obtain ventricular volume parameters, and it is helpful to evaluate cardiac function. However, the ultrasound images have the characteristics of high noise and difficulty in segmentation, bringing huge workload to segment the object region manually. Meanwhile, the automatic segmentation technology cannot guarantee the segmentation accuracy. In order to solve this problem, a novel algorithm framework is proposed to segment the ventricle. Firstly, faster region-based convolutional neural network is used to locate the object to get the region of interest. Secondly, K-means is used to pre-segment the image; then a mean shift with adaptive bandwidth of kernel function is proposed to segment the region of interest. Finally, the region growing algorithm is used to get the object region. By this framework, ventricle is obtained automatically without manual localization. Experiments prove that this framework can segment the object accurately, and the algorithm of adaptive mean shift is more stable and accurate than the mean shift with fixed bandwidth on quantitative evaluation. These results show that the method in this paper is helpful for automatic segmentation of left ventricle in echocardiography.

    Release date:2018-04-16 09:57 Export PDF Favorites Scan
  • Study of clustered damage in DNA after proton irradiation based on density-based spatial clustering of applications with noise algorithm

    The deoxyribonucleic acid (DNA) molecule damage simulations with an atom level geometric model use the traversal algorithm that has the disadvantages of quite time-consuming, slow convergence and high-performance computer requirement. Therefore, this work presents a density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm based on the spatial distributions of energy depositions and hydroxyl radicals (·OH). The algorithm with probability and statistics can quickly get the DNA strand break yields and help to study the variation pattern of the clustered DNA damage. Firstly, we simulated the transportation of protons and secondary particles through the nucleus, as well as the ionization and excitation of water molecules by using Geant4-DNA that is the Monte Carlo simulation toolkit for radiobiology, and got the distributions of energy depositions and hydroxyl radicals. Then we used the damage probability functions to get the spatial distribution dataset of DNA damage points in a simplified geometric model. The DBSCAN clustering algorithm based on damage points density was used to determine the single-strand break (SSB) yield and double-strand break (DSB) yield. Finally, we analyzed the DNA strand break yield variation trend with particle linear energy transfer (LET) and summarized the variation pattern of damage clusters. The simulation results show that the new algorithm has a faster simulation speed than the traversal algorithm and a good precision result. The simulation results have consistency when compared to other experiments and simulations. This work achieves more precise information on clustered DNA damage induced by proton radiation at the molecular level with high speed, so that it provides an essential and powerful research method for the study of radiation biological damage mechanism.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • Clustering analysis of risk factors in high-incidence areas of esophageal cancer in Yanting county

    Objective To investigate the dietary patterns of rural residents in the high-incidence areas of esophageal cancer (EC), and to explore the clustering and influencing factors of risk factors associated with high-incidence characteristics. Methods A special structured questionnaire was applied to conduct a face-to-face survey on the dietary patterns of rural residents in Yanting county of Sichuan Province from July to August 2021. Univariate and multivariate logistic regression models were used to analyze the influencing factors of risk factor clustering for EC. Results There were 838 valid questionnaires in this study. A total of 90.8% of rural residents used clean water such as tap water. In the past one year, the people who ate fruits and vegetables, soybean products, onions and garlic in high frequency accounted for 69.5%, 32.8% and 74.5%, respectively; the people who ate kimchi, pickled vegetables, sauerkraut, barbecue, hot food and mildew food in low frequency accounted for 59.2%, 79.6%, 68.2%, 90.3%, 80.9% and 90.3%, respectively. The clustering of risk factors for EC was found in 73.3% of residents, and the aggregation of two risk factors was the most common mode (28.2%), among which tumor history and preserved food was the main clustering pattern (4.6%). The logistic regression model revealed that the gender, age, marital status and occupation were independent influencing factors for the risk factors clustering of EC (P<0.05). Conclusion A majority of rural residents in high-incidence areas of EC in Yanting county have good eating habits, but the clustering of some risk factors is still at a high level. Gender, age, marital status, and occupation are influencing factors of the risk factors clustering of EC.

    Release date:2024-02-20 04:11 Export PDF Favorites Scan
  • Plaque segmentation of intracoronary optical coherence tomography images based on K-means and improved random walk algorithm

    In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K-means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor’s manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.

    Release date:2017-12-21 05:21 Export PDF Favorites Scan
  • Detection of carotid intima and media thicknesses based on ultrasound B-mode images clustered with Gaussian mixture model

    In clinic, intima and media thickness are the main indicators for evaluating the development of atherosclerosis. At present, these indicators are measured by professional doctors manually marking the boundaries of the inner and media on B-mode images, which is complicated, time-consuming and affected by many artificial factors. A grayscale threshold method based on Gaussian Mixture Model (GMM) clustering is therefore proposed to detect the intima and media thickness in carotid arteries from B-mode images in this paper. Firstly, the B-mode images are clustered based on the GMM, and the boundary between the intima and media of the vessel wall is then detected by the gray threshold method, and finally the thickness of the two is measured. Compared with the measurement technique using the gray threshold method directly, the clustering of B-mode images of carotid artery solves the problem of gray boundary blurring of inner and middle membrane, thereby improving the stability and detection accuracy of the gray threshold method. In the clinical trials of 120 healthy carotid arteries, means of 4 manual measurements obtained by two experts are used as reference values. Experimental results show that the normalized root mean square errors (NRMSEs) of the estimated intima and media thickness after GMM clustering were 0.104 7 ± 0.076 2 and 0.097 4 ± 0.068 3, respectively. Compared with the results of the direct gray threshold estimation, means of NRMSEs are reduced by 19.6% and 22.4%, respectively, which indicates that the proposed method has higher measurement accuracy. The standard deviations are reduced by 17.0% and 21.7%, respectively, which indicates that the proposed method has better stability. In summary, this method is helpful for early diagnosis and monitoring of vascular diseases, such as atherosclerosis.

    Release date:2021-02-08 06:54 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content