We in the present study observed the effect of N-fructose modified chitosan quaternary ammonium derivativeson on rat skin wound healing through animal experiments. Forty rats were randomly divided into eight groups (5 in each group). Four groups among the all 8 groups were the experimental groups, while the other 4 groups were the control groups. Next to the skin along the back of the spine, 1.50 cm×2.00 cm×0.16 cm full-thickness skin was cut to make an excision wound model for every rat. Those in the experimental groups were treated with the N-fructose-modified chitosan quaternary ammonium derivatives ointment dressing the wound, while those in the control groups with sterile medical vaseline processing. We dressed the wounds twice a day to observe the wound healing of all rats in different groups. We then observed the wound healing and wound pathology after 3, 7, 10, 15 days respectively in different groups. Results showed significant differences of the time of wound healing, area of wound healing and volume of wound healing between the experimental groups and control groups (P<0.05). It can be well concluded that N-fructose-modified chitosan quaternary ammonium derivatives does not harm the skin, but could promote skin healing, so that they could be suitable skin repair materials and ideal raw materials for medical dressing.
Objective To study the effect of water soluble chitosan (WSC) on the apoptosis of peritoneal macrophage induced by lipopolysaccharides (LPS), and discuss the mechanism. Methods Peritoneal macrophages were divided to three groups: phosphate buffered saline (PBS) group, LPS group and LPS plus WSC group. At hour 24, apoptosis cell and active caspase-3 were detected by flow cytometry; nitric oxide (NO) was determined with Griess reagent. Results There were more apoptosis cells in the LPS group than the PBS group. The percentage of apoptosis cells was significantly decreased in the LPS plus WSC group than the LPS group. The expression of active caspase-3 and the secretion of NO were also inhibited by WSC after LPS intervention. Conclusion WSC inhibits apoptosis of peritoneal macrophage induced by LPS.
ObjectiveTo investigate the mechanical properties of the novel compound calcium phosphate cement (CPC) biological material as well as the biological activity and osteogenesis effects of induced pluripotent stem cells (iPS) seeding on scaffold and compare their bone regeneration efficacy in cranial defects in rats.MethodsAc- cording to the different scaffold materials, the experiment was divided into 4 groups: pure CPC scaffold group (group A), CPC∶10%wt chitosan as 2∶1 ratio mixed scaffold group (group B), CPC∶10%wt chitosan∶whisker as 2∶1∶1 ratio mixed scaffold group (group C), and CPC∶10%wt chitosan∶whisker as 2∶1∶2 ratio mixed scaffold group (group D). Mechanical properties (bending strength, work-of-fracture, hardness, and modulus of elasticity) of each scaffold were detected. The scaffolds were cultured with fifth generation iPS-mesenchymal stem cells (MSCs), and the absorbance (A) values of each group were detected at 1, 3, 7, and 14 days by cell counting kit 8 (CCK-8) method; the alkaline phosphatase (ALP) activity, Live/Dead fluorescence staining and quantitative detection, ALP, Runx2, collagen typeⅠ, osteocalcin (OC), and bone morphogenetic protein 2 (BMP-2) gene expressions by RT-PCR were detected at 1, 7, and 14 days; and the alizarin red staining were detected at 1, 7, 14, and 21 days. Twenty-four 3-month-old male Sprague Dawley rats were used to establish the 8 mm-long skull bone defect model, and were randomly divided into 4 groups (n=6); 4 kinds of scaffold materials were implanted respectively. After 8 weeks, HE staining was used to observe the repair of bone defects and to detect the percentage of new bone volume and the density of neovascularization.ResultsThe bending strength, work-of-fracture, hardness, and modulus of elasticity in groups B, C, and D were significantly higher than those in group A, and in groups C, D than in group B, and in group D than in group C (P<0.05). CCK-8 assay showed that cell activity gradually increased with the increase of culture time, theA values in groups B, C, and D at 3, 7, 14 days were signifiantly higher than those in group A, and in groups C, D than in group B (P<0.05), but no significant difference was found between groups C and D (P>0.05). Live/Dead fluorescence staining showed that the proportion of living cells in groups B, C, and D at 7 and 14 days was significantly higher than that in group A (P<0.05), and in groups C, D at 7 days than in group B (P<0.05); but no significant difference was found between groups C and D (P>0.05). RT-PCR showed that the relative expressions of genes in groups B, C, and D at 7 and 14 days were significantly higher than those in group A, and in groups C, D than in group B (P<0.05); but no significant difference was found between groups C and D (P>0.05). Alizarin red staining showed that the red calcium deposition on the surface of scaffolds gradually deepened and thickened with the prolongation of culture time; theA values in groups B, C, and D at 14 and 21 days were significantly higher than those in group A (P<0.05), and in groups C and D than in group B (P<0.05), but no significant difference was found between groups C and D (P>0.05).In vivo repair experiments in animals showed that the new bone in each group was mainly filled with the space of scaffold material. Osteoblasts and neovascularization were surrounded by new bone tissue in the matrix, and osteoblasts were arranged on the new bone boundary. The new bone in groups B, C, and D increased significantly when compared with group A, and the new bone in groups C and D was significantly higher than that in group B. The percentage of new bone volume and the density of neovascularization in groups B, C, and D were significantly higher than those in group A, and in groups C and D than in group B (P<0.05); but no significant difference was found between groups C and D (P>0.05).ConclusionThe mechanical properties of the new reinforced composite scaffold made from composite chitosan, whisker, and CPC are obviously better than that of pure CPC scaffold material, which can meet the mechanical properties of cortical bone and cancellous bone. iPS-MSCs is attaching and proliferating on the new reinforced composite scaffold material, and the repair effect of bone tissue is good. It can meet the biological and osteogenic activity requirements of the implant materials in the bone defect repair.
Objective To evaluate the characterization, biocompatibil ity in vitro and in vivo, and antimicrobial activity of an injectable vancomycin-loaded borate glass/chitosan composite (VBC) so as to lay the foundation for its further cl inical application. Methods The sol id phase of VBC was constituted by borate glass and vancomycin, liquid phase was a mixture of chitosan, citric acid, and glucose with the proportion of 1 ∶ 10 ∶ 20. Solid phase and liquid phase was mixed withthe ratio of 2 ∶ 1. Vancomycin-loaded calcium sulfate (VCS) was produced by the same method using calcium sulfate instead of borate glass and sal ine instead of chitosan, as control. High performance liquid chromatography was applied to detect the release rate of antibiotics from VBC and VCS, and minimum inhibitory concentration (MIC) was tested by using an antibiotic tube dilution method. The structure of the VBC and VCS specimens before and 2, 4, 8, 16, and 40 days after immersion in D-Hank’s was examined by scanning electron microscopy, and the phase composition of VBC was analysed by X-ray diffraction after soaked for 40 days. Thirty-three healthy adult New Zealand white rabbits (weighing, 2.25-3.10 kg; male or female) were used to establ ish the osteomyel itis models according to Norden method. After 4 weeks, the models of osteomyel itis were successfully established in 28 rabbits, and they were randomly divided into 4 groups (groups A, B, C, and D). In group A (n=8), simple debridement was performed; in groups B and C (n=8), defect was treated by injecting VCS or VBC after debridement; and in group D (n=4), no treatment was given. The effectiveness of treatment was assessed using radiological and histological techniques after 2 months. Results The releases of vancomycin from VBC lasted for 30 days; the release rate of vancomycin reached 75% at the first 8 days, then could reached more than 90%. The releases of vancomycin from VCS lasted only for 16 days. The MIC of VBC and VCS were both 2 μg/mL. The VCS had a smooth glass crystal surface before immersion, however, it was almost degradated after 4 days. The fairly smooth surface of the VBC pellet became more porous and rougher with time, X-ray diffraction analysis of VBC soaked for 40 days indicated that the borate glass had gradually converted to hydroxyapatite. After 2 months, the best result of treatment was observed in group C, osteomyelitis symptoms disappeared. The X-ray scores of groups A, B, C, and D were 3.50 ± 0.63, 2.29 ± 0.39, 2.00 ± 0.41, and 4.25 ± 0.64, respectively; Smeltzer scores were 6.00 ± 0.89, 4.00 ± 0.82, 3.57 ± 0.98, and 7.25 ± 0.50, respectively. The scores were significantly higher in group D than in groups A, B, and C (P lt; 0.05), and in group A than in groups B and C (P lt; 0.05). The scores were higher in group B than in group C, but no significant difference was found (P gt; 0.05). Conclusion The VBC is effective in treating chronic osteomyelitis of rabbit by providing a sustained release of vancomycin, in addition to stimulating bone regeneration, so it may be a promising biomaterial for treating chronic osteomyelitis.
ObjectiveTo investigate the in vivo degradation and histocompatibility of modified chitosan based on conductive composite nerve conduit, so as to provide a new scaffold material for the construction of tissue engineered nerve.MethodsThe nano polypyrrole (PPy) was synthesized by microemulsion polymerization, blended with chitosan, and then formed conduit by injecting the mixed solution into a customized conduit formation model. After freeze-drying and deacidification, the nano PPy/chitosan composite conduit (CP conduit) was prepared. Then the CP conduits with different acetyl degree were resulted undergoing varying acetylation for 30, 60, and 90 minutes (CAP1, CAP2, CAP3 conduits). Fourier infrared absorption spectrum and scanning electron microscopy (SEM) were used to identify the conduits. And the conductivity was measured by four-probe conductometer. The above conduits were implanted after the subcutaneous fascial tunnels were made symmetrically on both sides of the back of 30 female Sprague Dawley rats. At 2, 4, 6, 8, 10, and 12 weeks after operation, the morphology, the microstructure, and the degradation rate were observed and measured to assess the in vivo degradation of conduits. HE staining and anti-macrophage immunofluorescence staining were performed to observe the histocompatibility in vivo.ResultsThe characteristic peaks of the amide Ⅱ band around 1 562 cm−1 appeared after being acetylated, indicating that the acetylation modification of chitosan was successful. There was no significant difference in conductivity between conduits (P>0.05). SEM observation showed that the surfaces of the conduits in all groups were similar with relatively smooth surface and compact structure. After the conduits were implanted into the rats, with the extension of time, all conduits were collapsed, especially on the CAP3 conduit. All conduits had different degrees of mass loss, and the higher the degree of acetylation, the greater the mass change (P<0.05). SEM observation showed that there were more pores at 12 weeks after implantation, and the pores showed an increasing trend as the degree of acetylation increased. Histological observation showed that there were more macrophages and lymphocytes infiltration in each group at the early stage. With the extension of implantation time, lymphocytes decreased, fibroblasts increased, and collagen fibers proliferated significantly. ConclusionThe modified chitosan basedon conductive composite nerve conduit made of nano-PPy/chitosan composite with different acetylation degrees has good biocompatibility, conductivity, and biodegradability correlated with acetylation degree in vivo, which provide a new scaffold material for the construction of tissue engineered nerve.
Objective To prepare collagen-chitosan /nano-hydroxyapatite-collagen-polylactic acid (Col-CS/ nHAC-PLA) biomimetic scaffold and to examine its biocompatibility so as to lay the foundation for its application on the treatment of osteochondral defect. Methods PLA was dissolved in dioxane for getting final concentration of 8%, and the nHAC power was added at a weight ratio of nHAC to PLA, 1 ∶ 1. The solution was poured into a mold and frozen. CS and Col were dissolved in 2% acetum for getting the final concentrations of 2% and 1% respectively, then compounded at a weight ratio of CS to Col, 20 ∶ 1. The solution was poured into the frozen mold containing nHAC-PLA, and then biomimetic osteochondral scaffold of Col-CS/nHAC-PLA was prepared by freeze-drying. Acute systemic toxicity test, intracutaneous stimulation test, pyrogen test, hemolysis test, cytotoxicity test, and bone implant test were performed to evaluate its biocompatibility. Results Col-CS/nHAC-PLA had no acute systemic toxicity. Primary irritation index was 0, indicating that Col-CS/nHAC-PLA had very slight skin irritation. In pyrogen test, the increasing temperature of each rabbit was less than 0.6℃, and the increasing temperature sum of 3 rabbits was less than 1.3℃, which was consistent with the evaluation criteria. Hemolytic rate of Col-CS/nHAC-PLA was 1.38% (far less than 5%). The toxicity grade of Col-CS/nHAC-PLA was classified as grade I. Bone implant test showed that Col-CS/nHAC-PLA had good biocompatibility with the surrounding tissue. Conclusion Col-CS/ nHAC-PLA scaffold has good biocompatibility, which can be used as an alternative osteochondral scaffold.
Objective To investigate the ectopic bone formation of the chitosan/phosphonic chitosan sponge combined with human umbil ical cord mesenchymal stem cells (hUCMSCs) in vitro. Methods Phosphorous groups were introduced in chitosan molecules to prepare the phosphonic chitosan; 2% chitosan and phosphonic chitosan solutions were mixed at a volume ratio of 1 ∶ 1 and freeze-dried to build the complex sponge, and then was put in the simulated body fluid for biomimetic mineral ization in situ. The hUCMSCs were isolated by enzyme digestion method from human umbil ical cord and were cultured. The chitosan/phosphonic chitosan sponge was cultured with hUCMSCs at passage 3, and the cell-scaffoldcomposite was cultured in osteogenic medium. The growth and adhesion of the cells on the scaffolds were observed by l ight microscope and scanning electron microscope (SEM) at 1 and 2 weeks after culturing, respectively. The cell prol iferation was detected by MTT assay at 1, 2, 3, 4, 5, and 6 days, respectively. Bilateral back muscles defects were created on 40 New Zealand rabbits (3-4 months old, weighing 2.1-3.2 kg, male or female), which were divided into groups A, B, and C. In group A, cellscaffold composites were implanted into 40 right defects; in group B, the complex sponge was implanted into 20 left defects; and in group C, none was implanted into other 20 left defects. The gross and histological observations were made at 4 weeks postoperatively. Results The analysis results of phosphonic chitosan showed that the phosphorylation occurred mainly in the hydroxyl, and the proton type and chemical shifts intensity were conform to its chemical structure. The SEM results showed that the pores of the chitosan/phosphonic chitosan sponge were homogeneous, and the wall of the pore was thinner; the coating of calcium and phosphorus could be observed on the surface of the pore wall after mineral ized with crystal particles; the cells grew well on the surface of the chitosan/phosphonic chitosan sponge. The MTT assay showed that the chitosan/phosphonic chitosan sponge could not inhibit the prol iferation of hUCMSCs. The gross observation showed that the size and shape of the cell-scaffold composite remained intact and texture was toughened in group A, the size of the complex sponge gradually reducedin group B, and the muscle defects wound healed with a l ittle scar tissue in group C. The histological observation showed that part of the scaffold was absorbed and new blood vessels and new bone trabeculae formed in group A, the circular cavity and residual chitosan scaffolds were observed in group B, and the wound almost healed with a small amount of lymphocytes in group C. Conclusion The chitosan/phosphonic chitosan sponge has good biocompatibil ity, the tissue engineered bone by combining the hUCMSCs with chitosan/phosphonic chitosan sponge has the potential of the ectopic bone formation in rabbit.
ObjectiveTo investigate the possibility and effect of chitosan porous scaffolds combined with bone marrow mesenchymal stem cells (BMSCs) in repair of neurological deficit after traumatic brain injury (TBI) in rats.MethodsBMSCs were isolated, cultured, and passaged by the method of bone marrow adherent culture. The 3rd generation BMSCs were identified by the CD29 and CD45 surface antigens and marked by 5-bromo-2-deoxyuridine (BrdU). The chitosan porous scaffolds were produced by the method of freeze-drying. The BrdU-labelled BMSCs were co-cultured in vitro with chitosan porous scaffolds, and were observed by scanning electron microscopy. MTT assay was used to observe the cell growth within the scaffold. Fifty adult Sprague Dawley rats were randomly divided into 5 groups with 10 rats in each group. The rat TBI model was made in groups A, B, C, and D according to the principle of Feeney’s free fall combat injury. Orthotopic transplantation was carried out at 72 hours after TBI. Group A was the BMSCs and chitosan porous scaffolds transplantation group; group B was the BMSCs transplantation group; group C was the chitosan porous scaffolds transplantation group; group D was the complete medium transplantation group; and group E was only treated with scalp incision and skull window as sham-operation group. Before TBI and at 1, 7, 14, and 35 days after TBI, the modified neurological severity scores (mNSS) was used to measure the rats’ neurological function. The Morris water maze tests were used after TBI, including the positioning voyage test (the incubation period was detected at 31-35 days after TBI, once a day) and the space exploration test (the number of crossing detection platform was detected at 35 days after TBI). At 36 days after TBI, HE staining and immunohistochemistry double staining [BrdU and neurofilament triplet H (NF-H) immunohistochemistry double staining, and BrdU and glial fibrillary acidic protein (GFAP) immunohistochemistry double staining] were carried out to observe the transplanted BMSCs’ migration and differentiation in the damaged brain areas.ResultsFlow cytometry test showed that the positive rate of CD29 of the 3rd generation BMSCs was 98.49%, and the positive rate of CD45 was only 0.85%. After co-cultured with chitosan porous scaffolds in vitrofor 48 hours, BMSCs were spindle-shaped and secreted extracellular matrix to adhere in the scaffolds. MTT assay testing showed that chitosan porous scaffolds had no adverse effects on the BMSCs’ proliferation. At 35 days after TBI, the mNSS scores and the incubation period of positioning voyage test in group A were lower than those in groups B, C, and D, and the number of crossing detection platform of space exploration test in group A was higher than those in groups B, C, and D, all showing significant differences (P<0.05); but no significant difference was found between groups A and E in above indexes (P>0.05). HE staining showed that the chitosan porous scaffolds had partially degraded, and they integrated with brain tissue well in group A; the degree of repair in groups B, C, and D were worse than that of group A. Immunohistochemical double staining showed that the transplanted BMSCs could survive and differentiate into neurons and glial cells, some differentiated neural cells had relocated at the normal brain tissue; the degree of repair in groups B, C, and D were worse than that of group A.ConclusionThe transplantation of chitosan porous scaffolds combined with BMSCs can improve the neurological deficit of rats following TBI obviously, and also inhabit the glial scar’s formation in the brain damage zone, and can make BMSCs survive, proliferate, and differentiate into nerve cells in the brain damage zone.
Objective To construct a ultraviolet-cross-linkable chitosan-carbon dots-morin (NMCM) hydrogel, observe whether it can repair cartilage injury by in vivo and in vitro experiments, and explore the related mechanism. Methods The chitosan was taken to prepare the ultraviolet (UV)-cross-linkable chitosan by combining methacrylic anhydride, and the carbon dots by combining acrylamide. The two solutions were mixed and added morin solution. After UV irradiation, the NMCM hydrogel was obtained, and its sustained release performance was tested. Chondrocytes were separated from normal and knee osteoarticular (KOA) cartilage tissue donated by patients with joint replacement and identified by toluidine blue staining. The 3rd generation KOA chondrocytes were co-cultured with the morin solutions with concentrations of 12.5, 25.0, 50.0 µmol/L and NMCM hydrogel loaded with morin of the same concentrations, respectively. The effects of morin and NMCM hydrogel on the proliferation of chondrocytes were detected by cell counting kit 8 (CCK-8). After co-cultured with NMCM hydrogel loaded with 50 µmol/L morin, the level of collagen type Ⅱ (COL-Ⅱ) of KOA chondrocytes was detected by immunofluorescence staining, and the level of reactive oxygen species (ROS) was detected by 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. Twenty 4-week old Sprague Dawley rats were selected to construct a articular cartilage injury of right hind limb model, and were randomly divided into two groups (n=10). The cartilage injury of the experimental group was repaired with NMCM hydrogel loaded with 25 µmol/L morin, and the control group was not treated. At 4 weeks after operation, the repair of cartilage injury was observed by micro-CT and gross observation and scored by the International Cartilage Repair Association (ICRS) general scoring. The cartilage tissue and subchondral bone tissue were observed by Safranine-O-fast green staining and COL-Ⅱ immunohistochemistry staining and scored by ICRS histological scoring. The expressions of tumor necrosis factor α (TNF-α), nuclear factor κB (NK-κB), matrix metalloproteinase 13 (MMP-13), and COL-Ⅱ were detected by Western blot and real-time fluorescence quantitative PCR. Results NMCM hydrogels loaded with different concentrations of morin were successfully constructed. The drug release rate was fast in a short period of time, gradually slowed down after 24 hours, and the amount of drug release was close to 0 at 96 hours. At this time, the cumulative drug release rate reached 88%. Morin with a concentration ≤50 µmol/L had no toxic effect on chondrocytes, and the proliferation of chondrocytes improved under the intervention of NMCM hydrogel (P<0.05). NMCM hydrogel loaded with morin could increase the level of COL-Ⅱ in KOA chondrocytes (P<0.05) and reduce the level of ROS (P<0.05), but it did not reach the normal level (P<0.05). Animal experiments showed that in the experimental group, the articular surface was rough and the defects were visible at 4 weeks after operation, but the surrounding tissues were repaired and the joint space remained normal; in the control group, the articular surface was rougher, and no repair tissue was found for cartilage defects. Compared with the control group, the experimental group had more chondrocytes, increased COL-Ⅱ expression, and higher ICRS gross and histological scores (P<0.05); the relative expressions of MMP-13, NF-κB, and TNF-α protein and mRNA significantly decreased (P<0.05), and the relative expressions of COL-Ⅱ protein/COL-2a1 mRNA significantly increased (P<0.05). Conclusion NMCM hydrogel can promote chondrocytes proliferation, down regulate chondrocyte catabolism, resist oxidative stress, protect chondrocytes from cartilage injury, and promote cartilage repair.
This study aims to compare two kinds of modified poly (lactic acid) (PLA) materials:PLA-chitosan (PLA-CTS) and PLA-poly (glycolic acid) (PLA-PGA). PLA-CTS and PLA-PGA scaffolds were prepared and observed under electron microscope. The scaffold porosity was calculated and the pH of the degradation solution was measured. Then rat olfactory ensheathing cells (OECs) were cultivated, and mixed cultured respectively with two scaffolds as two groups. The proliferation, adhesion rate and growth condition of the OECs were observed and compared between the two groups. Results showed that both the prepared PLA-CTS and PLA-PGA scaffolds were three-dimensional porous structure and the porosity of PLA-CTS was 91%, while that of PLA-PGA was 87%. The pH of degradation solution decreased gradually, of which PLA-PGA fell faster than PLA-CTS. After added to the two scaffolds, most OECs could grow well, and there were no significant differences between the two groups on MTT test and nuclei number determined by fluorescent microscope. However, the cell adhesion rate of PLA-CTS group was significantly higher than that of PLA-PGA. It can be concluded that compared with PLA-PGA, PLA-CTS might be a better choice as OECs scaffold.