ObjectiveTo determine the expression level of Sonic hedgehog (Shh) in the passage of hair follicle stem cells (HFSCs), analyze the effect of Shh overexpression on the proliferation activity of HFSCs, and explore the survival of HFSCs after Shh overexpression and its effect on hair follicle regeneration. MethodsHair follicles from the normal area (H1 group) and alopecia area (H2 group) of the scalp donated by 20 female alopecia patients aged 40-50 years old were taken, and the middle part of the hair follicle was cut under the microscope to culture, and the primary HFSCs were obtained and passaged; the positive markers (CD29, CD71) and negative marker (CD34) on the surface of the fourth generation HFSCs were identified by flow cytometry. The two groups of HFSCs were transfected with Shh-overexpressed lentivirus. Flow cytometry and cell counting kit 8 assay were used to detect the cell cycle changes and cell proliferation of HFSCs before and after transfection, respectively. Then the HFSCs transfected with Shh lentivirus were transplanted subcutaneously into the back of nude mice as the experimental group, and the same amount of saline was injected as the control group. At 5 weeks after cell transplantation, the expression of Shh protein in the back skin tissue of nude mice was detected by Western blot. HE staining and immunofluorescence staining were used to compare the number of hair follicles and the survival of HFSCs between groups. ResultsThe isolated and cultured cells were fusiform and firmly attached to the wall; flow cytometry showed that CD29 and CD71 were highly expressed on the surface of the cells, while CD34 was lowly expressed, suggesting that the cultured cells were HFSCs. The results of real-time fluorescence quantitative PCR and Western blot showed that the expression levels of Shh protein and gene in the 4th, 7th, and 10th passages of cells in H1 and H2 groups decreased gradually with the prolongation of culture time in vitro. After overexpression of Shh, the proliferation activity of HFSCs in the two groups was significantly higher than that in the blank group (not transfected with lentivirus) and the negative control group (transfected with negative control lentivirus), and the proliferation activity of HFSCs in H1 group was significantly higher than that in H2 group before and after transfection, showing significant differences (P<0.05). At 5 weeks after cell transplantation, Shh protein was stably expressed in the dorsal skin of each experimental group; the number of hair follicles and the expression levels of HFSCs markers (CD71, cytokeratin 15) in each experimental group were significantly higher than those in the control group, and the number of hair follicles and the expression levels of HFSCs markers in H1 group were significantly higher than those in H2 group, and the differences were significant (P<0.05). ConclusionLentivirus-mediated Shh can be successfully transfected into HFSCs, the proliferation activity of HFSCs significantly increase after overexpression of Shh, which can secrete and express Shh continuously and stably, and promote hair follicle regeneration by combining the advantages of stem cells and Shh.
Objective To investigate the effect of M2 microglia (M2-MG) transplantation on spinal cord injury (SCI) repair in mice. Methods Primary MG were obtained from the cerebral cortex of 15 C57BL/6 mice born 2-3 days old by pancreatic enzyme digestion and identified by immunofluorescence staining of Iba1. Then the primary MG were co-cultured with interleukin 4 for 48 hours (experimental group) to induce into M2 phenotype and identified by immunofluorescence staining of Arginase 1 (Arg-1) and Iba1. The normal MG were harvested as control (control group). The dorsal root ganglion (DRG) of 5 C57BL/6 mice born 1 week old were co-cultured with M2-MG for 5 days to observe the axon length, the DRG alone was used as control. Forty-two 6-week-old female C57BL/6 mice were randomly divided into sham group (n=6), SCI group (n=18), and SCI+M2-MG group (n=18). In sham group, only the laminae of T10 level were removed; SCI group and SCI+M2-MG group underwent SCI modeling, and SCI+M2-MG group was simultaneously injected with M2-MG. The survival of mice in each group was observed after operation. At immediate (0), 3, 7, 14, 21, and 28 days after operation, the motor function of mice was evaluated by Basso Mouse Scale (BMS) score, and the gait was evaluated by footprint experiment at 28 days. The spinal cord tissue was taken after operation for immunofluorescence staining, in which glial fibrillary acidic protein (GFAP) staining at 7, 14, and 28 days was used to observe the injured area of the spinal cord, neuronal nuclei antigen staining at 28 days was used to observe the survival of neurons, and GFAP/C3 double staining at 7 and 14 days was used to observe the changes in the number of A1 astrocytes. Results The purity of MG in vitro reached 90%, and the most of the cells were polarized into M2 phenotype identified by Arg-1 immunofluorescence staining. M2-MG promoted the axon growth when co-cultured with DRGs in vitro (P<0.05). All groups of mice survived until the experiment was completed. The hind limb motor function of SCI group and SCI+M2-MG group gradually recovered over time. Among them, the SCI+M2-MG group had significantly higher BMS scores than the SCI group at 21 and 28 days (P<0.05), and the dragging gait significantly improved at 28 days, but it did not reach the level of the sham group. Immunofluorescence staining showed that compared with the SCI group, the SCI+M2-MG group had a smaller injury area at 7, 14, and 28 days, an increase in neuronal survival at 28 days, and a decrease in the number of A1 astrocytes at 7 and 14 days, with significant differences (P<0.05). ConclusionM2-MG transplantation improves the motor function of the hind limbs of SCI mice by promoting neuron survival and axon regeneration. This neuroprotective effect is related to the inhibition of A1 astrocytes polarization.
ObjectiveTo observe the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) on blood glucose levels and diabetic retinopathy in diabetes mellitus (DM) rats. MethodA total of 45 healthy male Sprague-Dawley rats were randomly divided into normal control group (group A, 10 rats) and DM group (33 rats). Diabetic model was established in DM group by tail vein injection of streptozotocin.The DM group was further randomly divided into 3 groups (11 rats in each group), including group B (no transplantation), group C (hUCMSC was injected through tail vein) and group D (hUCMSC was injected into the vitreous). Blood glucose, retina wholemont staining and expression of brain derived neurotrophic factor (BDNF) in the retina were measured at 2, 4, 6, 8 weeks after hUCMSC injection. The blood glucose was significantly different between A-D groups before injection (t=-64.400, -60.601, -44.065, -43.872; P=0.000) BDNF expression was studied by real time fluorescence quantitative polymerase chain reaction (RT-PCR) and immunohistochemistry staining. ResultsThe blood glucose was significantly different between A-D groups after hUCMSC injection (F=400.017, 404.410, 422.043, 344.109; P=0.000), and between group C and group B/D (t=4.447, 4.990; P < 0.01). Immuno-staining shown that BDNF was positive in ganglion cell layer (RGC) of group A, weak in group B while BDNF expression increased in group C/D. BDNF mRNA expression was significantly different between group B, C and D at 4, 6 and 8 weeks after hUCMSC injection (F=29.372, 188.492, 421.537; P=0.000), and between group B and C/D (t=66.781, 72.401, 63.880, 88.423, 75.120, 83.002; P < 0.01) by RT-PCR analysis. The BDNF mRNA expression was significantly different between C and D groups only at 8 weeks after hUCMSC injection (t=127.321, P=0.005). ConclusionsTail vein injection of hUCMSCs can significantly reduce the blood glucose levels of rats. Intravenous and intravitreal injection of hUCMSCs can increase the expression of BDNF.
Objective To observe the survival of human umbilical cord derived mesenchymal stem cells (hUC-MSCs) after injection into the vitreous of rabbits,and the animal safety under those procedures.Methods Twentyseven pigmented rabbits were randomly divided into 3 groups (intravitreal injection 1 week group,2 weeks group and 4 weeks group), each with 9 rabbits.For each animal the right eye was the experimental eye receiving hUCMSCs injection,while the left eye was the control eye receiving culture medium. The rabbit eyes were examined by slitlamp microscope, indirect ophthalmoscopy, fundus photography, fundus fluorescence angiography(FFA)and Tonopen tonometer before and after injection. hUCMSCs were labeled by CMDil in vitro, and their survival status was measured by confocal fluorescence microscopy, light microscope and transmission electron microscope at 4 weeks after injection. Results Four weeks after injection, a large number of the hUCMSCs were still alive in the vitreous cavity. The overall condition of those rabbits was good. The anterior segment and retina of experimental eyes were normal, without hyperfluorescence, hypofluorescence and leakage in the retina at 1,2 and 4 weeks after injection. There was no significant difference on IOP before and after injection at different time points (P>0.05), and no obvious changes at cornea, anterior chamber angle,lens,retinal structure by.light microscope and transmission electron microscope examination.Conclusion hUC-MSCs can survive in the rabbit vitreous for four weeks;intravitreal injection of hUCMSCs was safe and feasible.
ObjectiveTo investigate the effect of microencapsulated transgenic bone marrow mesenchymal stem cells (BMSCs) transplantation on early steroid induced osteonecrosis of femoral head (SONFH) in rabbits.MethodsAlginate poly-L-lysine-sodium alginate (APA) microencapsulated transgenic BMSCs with high expression of Foxc2 were prepared by high-voltage electrostatic method. Part of the cells were cultured in osteoblasts and observed by alizarin red staining at 2 and 3 weeks. Forty New Zealand white rabbits were used to prepare SONFH models by using hormone and endotoxin. Thirty two rabbits who were successful modeling were screened out by MRI and randomly divided into 4 groups (groups A, B, C and D, n=8); another 6 normal rabbits were taken as normal control (group E). The rabbits in group A did not receive any treatment; and in groups B, C, and D were injected with normal saline, allogeneic BMSCs, and APA microencapsulated transgenic BMSCs respectively after core decompression. At 6 and 12 weeks after operation, specimens of femoral head were taken for HE staining to observe bone ingrowth; the expressions of osteocalcin (OCN), peroxisome proliferative activated receptor γ 2 (PPARγ-2), and vascular endothelial growth factor (VEGF) proteins were observed by immunohistochemistry staining. At 12 weeks after operation, the bone microstructure was observed by transmission electron microscope, and the maximum compressive strength and average elastic modulus of cancellous bone and subchondral bone were measured by biomechanics.ResultsAfter 2 and 3 weeks of induction culture, alizarin red staining showed the formation of calcium nodules, and the number of calcium nodules increased at 3 weeks when compared with 2 weeks. The rabbits in each group survived until the experiment was completed. Compared with groups A, B, and C, the trabeculae of group D were more orderly, the empty bone lacunae were less, there were abundant functional organelles, and obvious osteogenesis was observed, and the necrotic area was completely repaired at 12 weeks. Immunohistochemical staining showed that, at 6 and 12 weeks after operation, the expressions of OCN and VEGF in groups A, B, and C were significantly lower than those in groups D and E, while those in groups B and C were significantly higher than those in group A, and in group E than in group D (P<0.05). The expression of PPARγ-2 was significantly higher in groups A, B, and C than in groups D and E, and in group A than in groups B and C, and in group D than in group E (P<0.05). At 12 weeks after operation, biomechanical test showed that the average elastic modulus and maximum compressive strength of cancellous bone and subchondral bone in groups D and E were significantly higher than those in groups A, B, and C (P<0.05); there was no significant difference between groups A, B, and C and between groups D and E (P>0.05).ConclusionIn vivo transplantation of microencapsulated transgenic BMSCs can repair early SONFH in rabbits.
ObjectiveTo observe the clinical features of cytomegalovirus (CMV) retinitis (CMVR)-related uveitis after hematopoietic stem cell transplantation (HSCT).MethodsA retrospective clinical study. From October 2015 to May 2020, 14 cases of 21 eyes of CMVR patients with CMVR after HSCT confirmed by the ophthalmological examination of The First Affiliated Hospital of Soochow University were included in the study. Among them, there were 5 males with 8 eyes and 9 females with 13 eyes. The average age was 35.12±12.24 years old. All the affected eyes were examined by slit lamp microscope combined with front lens and fundus color photography. At the same time, fluorescein fundus angiography (FFA) was performed to examine 10 eyes of 5 cases; 3 cases of 3 eyes were examined for inflammatory cytokines in aqueous humor. All eyes received intravitreal injection of ganciclovir; patients with a history of systemic CMV infection received intravenous infusion of ganciclovir/foscarnet. The retinal lesions in the eye were completely resolved or the aqueous CMV-DNA was negative as a cure for CMVR. The uveitis symptoms, signs, FFA manifestations and the test results of inflammatory factors in aqueous humor before and after the CMVR cure was observed. The follow-up time after CMVR was cured was 3-42 months, and the average follow-up time was 14.28±13.12 months.ResultsAll eyes with CMVR were diagnosed with retrocorneal dust and/or stellate keratic precipitates (KP), anterior chamber flare and cells, and varying degrees of vitreous flocculent opacity; the retina was typical of a mixture of hemorrhage and yellow-white necrosis like "scrambled eggs with tomatoes". After CMVR was cured, there were 16 eyes (71.4%, 10/14) in 10 cases with KP, anterior chamber flare, cell and vitreous opacity. FFA examination revealed that the majority of retinal leakage during the active period of CMVR was necrotic foci and surrounding tissues; after CMVR was cured, the majority of retinal leakage was the retina and blood vessels in the non-necrotic area. The test results of inflammatory factors in aqueous humor showed that interleukin (IL)-6, IL-8, and vascular endothelial cell adhesion molecules were significantly increased in the active phase of CMVR; after 3 months of CMVR cured, inflammatory factors did not increase significantly.ConclusionCMVR-associated uveitis after HSCT show as chronic panuveitis, with no obvious eye congestion, KP, anterior chamber flare, cell and vitreous opacity, and retinal vessel leakage which could exist for a long time (>3 months).
Objective To assess systematically the safety and ef fects of stem cell transplantation in stroke patients.Methods CENTRAL (April 2007), MEDLINE (1966 to April 2007), EMBASE (1980 to April 2007), and other databases were searched for RCT of the use of stem cell transplantation for patients with stroke. We critically appraised the quality of included studies according to Juny 2001. We assessed the effects of stem cell therapy on mortal ity, functional outcomes, cognitive functions, image changes, quality of life, and adverse effects by doing meta-analysis with The Cochrane Collaboration’ s Review Manager. Dichotomous outcomes were reported as relative risk and continuous outcome measures as weighted mean differences, with 95% confidence intervals.Results Three RCTs and one historical controlled trial were included involving a total of 69 participants. Only one trial reported the effect on mortality, but because of the small number of death it was not possible to detect any significant differences between stem cell transplantation and routine treatment (RR 0.11, 95%CI 0.01 to 2.31, P = 0.16). Three studies indicated a statistically significant improvement of some functional outcomes in patients treated by stem cell transplantation. Improvements of cognitive function were reported in another trial. One trial showed that the stem cell transplantation significantly improved qual ity of life compared with the control group. Conclusion The current evidence is insufficient to determine whether or not stem cell transplantation is a safe and effective therapy for stroke patients. High-quality, large-scale randomized trials are needed to assess the role of stem cell transplantation for stroke.
ObjectiveTo analyze the efficacy and safety of various treatment strategies for patients with refractory/recurrent diffuse large B-cell lymphoma (r/r-DLBCL) by network meta-analysis. MethodsThe PubMed, EMbase and Cochrane Library databases were searched to collect randomized controlled trials (RCTs) and clinical controlled trials related to the objectives of the study from inception to November 16th, 2022. After two investigators independently screened the literature, extracted data and evaluated the risk of bias of the included studies, a network meta-analysis was performed using R 4.2.2 software. ResultsA total of 8 RCTs and 11 non-randomized controlled trials were included, involving 2 559 cases. The treatment regimen included chemotherapy, immunochemotherapy, chemotherapy combined with ADC, immunochemotherapy combined with ADC, ASCT based regimen, CAR-T based regimen, ASCT combined with CAR-T, immunomodulators, small molecule inhibitors, and rituximab combined with small molecule inhibitors. The ranking probability results showed that the top three complete remission (CR) rates among all schemes were ASCT combined with CAR-T, chemotherapy combined with ADC, and immune modulators; The top three overall response rates (ORR) were chemotherapy combined with ADC, ASCT combined with CAR-T, and ASCT. The CAR-T regimen had a higher rate of severe neutropenia; The severe thrombocytopenia rate of ASCT regimen was relatively high; There was no significant difference in the incidence of SAEs among the other options. ConclusionASCT combined with CAR-T and chemotherapy combined with ADC have the best therapeutic effects on r/r-DLBCL. However, the specific protocol to be adopted requires clinical doctors to combine actual conditions, comprehensively consider the efficacy and side effects, and develop personalized treatment strategies for r/r-DLBCL patients.
ObjectiveTo investigate the behavioral recovery of spinal cord injury (SCI) rats that received transplantation of NEP1-40 gene-modified neural stem cells. MethodsNeural stem cells (NSCs) were derived from the cortex tissue of rat embryo at the age of 18 days and identified by Nestin immunofluorescence. The lentiviruses were transduced to NSCs to construct NEP1-40 gene modified NSCs. Spinal cords of 30 Sprague-Dawley rats were hemisected at the nineth thoracic vertebrae level. The rats were randomly assigned to three groups. Cell culture medium, NSCs and NEP1-40 gene-modified NSCs were transplanted into the lesion site of rats of SCI group, NSCs group and NEP1-40-NSCs group respectively 7 days after injury. Additional 10 rats served as blank control group (sham group), which only received laminectomy. Following transplantation, behavior tests including Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale and grid test were utilized to evaluate spinal cord functional recovery. ResultsBehavior tests 8 weeks after cells transplantation showed that the rats in SCI group got worst results, the BBB scores improved and the grid drop times reduced significantly in NSCs transplantation group (P<0.01) and behavioral test outcomes were best in the NEP1-40 gene-modified NSCs group (P<0.01). ConclusionNEP1-40 gene modification can significantly improve the behavioral recovery of SCI rats that received transplantation of pure neural stem cells. It can provide a new idea and reliable experimental base for the study of NSCs transplantation for spinal cord injury.