west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bone marrow mesenchymal stem cells" 38 results
  • Effect of Wnt/β-catenin signaling pathway in neural differentiation of human bone marrow mesenchymal stem cells

    Objective To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process. MethodsThe identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot. ResultsWhen compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A (P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D (P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased (P<0.05), while NSE, MAP-2, and GFAP genes significantly increased (P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E (P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E (P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E (P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E (P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E (P<0.05). Conclusion Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.

    Release date:2023-10-11 10:17 Export PDF Favorites Scan
  • Experimental study on the effect of desferrioxamine on targeted homing and angiogenesis of bone marrow mesenchymal stem cells

    ObjectiveTo investigate whether desferrioxamine (DFO) can enhance the homing of bone marrow mesenchymal stem cells (BMSCs) and improve neovascularization in random flaps of rats.MethodsBMSCs and fibroblasts (FB) of luciferase transgenic Lewis rats were isolated and cultured. Forty 4-week-old Lewis male rats were used to form a 10 cm×3 cm rectangular flap on their back. The experimental animals were randomly divided into 4 groups with 10 rats in each group: in group A, 200 μL PBS were injected through retrobulbar venous plexus; in group B, 200 μL FB with a concentration of 1×106 cells/mL were injected; in group C, 200 μL BMSCs with a concentration of 1×106 cells/mL were injected; in group D, cells transplantation was the same as that in group C, after cells transplantation, DFO [100 mg/(kg·d)] were injected intraperitoneally for 7 days. On the 7th day after operation, the survival rate of flaps in each group was observed and calculated; the blood perfusion was observed by laser speckle imaging. Bioluminescence imaging was used to detect the distribution of transplanted cells in rats at 30 minutes and 1, 4, 7, and 14 days after operation. Immunofluorescence staining was performed at 7 days after operation to observe CD31 staining and count capillary density under 200-fold visual field and to detect the expressions of stromal cell derived factor 1 (SDF-1), epidermal growth factor (EGF), fibroblast growth factor (FGF), and Ki67. Transplanted BMSCs were labeled with luciferase antibody and observed by immunofluorescence staining whether they participated in the repair of injured tissues.ResultsThe necrosis boundary of ischemic flaps in each group was clear at 7 days after operation. The survival rate of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Laser speckle imaging showed that the blood perfusion units of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Bioluminescence imaging showed that BMSCs gradually migrated to the ischemia and hypoxia area and eventually distributed to the ischemic tissues. The photon signal of group D was significantly stronger than that of other groups at 14 days after operation (P<0.05). CD31 immunofluorescence staining showed that capillary density in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). The expressions of SDF-1, EGF, FGF, and Ki67 in groups C and D were significantly stronger than those in groups A and B, and in group D than in group C. Luciferase-labeled BMSCs were expressed in the elastic layer of arteries, capillaries, and hair follicles at 7 days after transplantation.ConclusionDFO can enhance the migration and homing of BMSCs to the hypoxic area of random flap, accelerate the differentiation of BMSCs in ischemic tissue, and improve the neovascularization of ischemic tissue.

    Release date:2019-01-03 04:07 Export PDF Favorites Scan
  • TREATMENT OF EARLY AVASCULAR NECROSIS OF FEMORAL HEAD BY CORE DECOMPRESSION COMBINED WITH AUTOLOGOUS BONE MARROW MESENCHYMAL STEM CELLS TRANSPLANTATION

    Objective To compare the cl inical outcomes of the core decompression combined with autologous bone marrow mesenchymal stem cells (BMSCs) transplantation with the isolated core decompression for the treatment of earlyavascular necrosis of the femoral head (ANFH). Methods From May 2006 to October 2008, 8 patients (16 hips) with earlyANFH were treated. There were 7 males and 1 female with an average age of 35.7 years (range, 19-43 years). According to the system of the Association Research Circulation Osseous (ARCO): 4 hips were classified as stage II a, 2 as stage II b, 1 as stage II c, and 1 as stage III a in group A; 2 hips were classified as stage II a, 2 as stage II b, 3 as stage II c, and 1 as stage III a in group B. The average disease course was 1.1 years (range, 4 months to 2 years). The patients were randomly divided into 2 groups according to left or right side: group A, only the core decompression was used; group B, both the core decompression and autologous BMSCs transplantation were used. The Harris score and visual analogue scale (VAS) score were determined, imaging evaluation was carried out by X-rays and MRI pre- and post-operatively. The erythrocyte sedimentation rate, C-reactive protein, l iver function, renal function, and immunoglobul in were detected for safety evaluation. Results All incisions healed by first intention. Eight patients were followed up 12-42 months (23.5 months on average). The cl inical symptoms of pain and claudication were gradually improved. The Harris scores and VAS scores of all patients were increased significantly at 3, 6, and 12 months after operation (P lt; 0.05). There was no significant difference between groups A and B 3 and 6 months after operation (P gt; 0.05), but there was significant difference between groups A and B 12 months after operation (P lt; 0.05). The necrosis area of femoral head in groups A and B were 18.13% ± 2.59% and 13.25% ± 2.12%, respectively, showing significant difference (P lt; 0.05). In group A, femoral head collapsed 12 months after operation in 1 case of stage III. No compl ication of fever, local infectionoccurred. Conclusion The core decompression and the core decompression combined with BMSCs transplantation are both effective for the treatment of early ANFH. The core decompression combined with BMSCs transplantation is better than core decompression in the rel ief of pain and postponing head collapse.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells

    ObjectiveTo prepare dopamine modified and cartilage derived morphogenetic protein 1 (CDMP1) laden polycaprolactone-hydroxyapatite (PCL-HA) composite scaffolds by three-dimensional (3D) printing and evaluate the effect of 3D scaffolds on in vitro chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).MethodsA dimensional porous PCL-HA scaffold was fabricated by 3D printing. Dopamine was used to modify the surface of PCL-HA and then CDMP-1 was loaded into scaffolds. The surface microstructure was observed by scanning electron microscope (SEM) and porosity and water static contact angle were also detected. The cytological experiment in vitro were randomly divided into 3 groups: group A (PCL-HA scaffolds), group B (dopamine modified PCL-HA scaffolds), and group C (dopamine modified and CDMP-1 laden PCL-HA scaffolds). The hBMSCs were seeded into three scaffolds, in chondrogenic culture conditions, the cell adhesive rate, the cell proliferation (MTT assay), and cell activity (Live-Dead staining) were analyzed; and the gene expressions of collagen type Ⅱ and Aggrecan were detected by real-time fluorescent quantitative PCR.ResultsThe scaffolds in 3 groups were all showed a cross-linked and pore interconnected with pore size of 400–500 μm, porosity of 56%, and fiber orientation of 0°/90°. For dopamine modification, the scaffolds in groups B and C were dark brown while in group A was white. Similarly, water static contact angle was from 76° of group A to 0° of groups B and C. After cultured for 24 hours, the cell adhesion rate of groups A, B, and C was 34.3%±3.5%, 48.3%±1.5%, and 57.4%±2.5% respectively, showing significant differences between groups (P<0.05). Live/Dead staining showed good cell activity of cells in 3 groups. MTT test showed that hBMSCs proliferated well in 3 groups and the absorbance (A) value was increased with time. The A value in group C was significantly higher than that in groups B and A, and in group B than in group A after cultured for 4, 7, 14, and 21 days, all showing significant differences (P<0.05). The mRNA relative expression of collagen type Ⅱ and Aggrecan increased gradually with time in 3 groups. The mRNA relative expression of collagen type Ⅱafter cultured for 7, 14, and 21 days, and the mRNA relative expression of Aggrecan after cultured for 14 and 21 days in group C were significantly higher than those in groups A and B, and in group B than in group A, all showing significant differences (P<0.05).ConclusionCo-culture of dopamine modified and CDMP1 laden PCL-HA scaffolds and hBMSCs in vitro can promote hBMSCs’ adhesion, proliferation, and chondrogenic differentiation.

    Release date:2018-02-07 03:21 Export PDF Favorites Scan
  • Lentivirus-mediated silencing of P75 neurotrophin receptor combined with nerve growth factor overexpression and transfection of bone marrow mesenchymal stem cells combined with demineralized bone matrix for heterotopic osteogenesis

    ObjectiveTo investigate the effects of silencing P75 neurotrophin receptor (P75NTR) and nerve growth factor (NGF) overexpression on the proliferative activity and ectopic osteogenesis ability of bone marrow mesenchymal stem cells (BMSCs) combined with demineralized bone matrix for heterotopic osteogenesis.MethodsBMSCs of Sprague Dawley (SD) rats were cultured and passaged by adherent isolation method. The third generation BMSCs were transfected with lentivirus mediated P75NTR gene silencing (group B), NGF overexpression gene (group C), P75NTR silencing and NGF overexpression double genes (group D), respectively, and untransfected cells as control (group A). After 7 days of transfection, the expression of fluorescent protein of the target gene was observed by fluorescence microscope; cell counting kit 8 method was used to detect the cells activity for 8 days after transfection; the expressions of P75NTR and NGF proteins in each group were detected by Western blot. The adhesion of BMSCs to demineralized bone matrix (DBM) was observed by inverted phase contrast microscope and scanning electron microscope after transfection of p75NTR silencing and NGF overexpression double genes. After transfection, BMSCs and DBM were co-cultured to prepare 4 groups of tissue engineered bone, which were respectively placed in the dorsal subcutaneous tissue of 8-week-old SD rats to construct subcutaneous ectopic osteogenesis model (n=6). HE staining was performed at 4 and 8 weeks after operation. ALP staining was used to observe the formation of calcium nodules at 8 weeks after operation. The expressions of Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were detected by real-time fluorescent quantitative PCR.ResultsAt 7 days after transfection, there was no fluorescence expression in group A, red fluorescence expression was seen in group B, green fluorescence expression in group C, and red-green compound fluorescence expression in group D. The fluorescence expression rate of target gene was about 70%. Western blot detection showed that the relative expression of P75NTR protein in groups A and C was significantly higher than that in groups B and D, and the relative expression of NGF protein in groups C and D was significantly higher than that in groups A and B (P<0.05). With the passage of time, the cell proliferation activity increased in all groups, especially in group D, which was significantly higher than that in group A at 3-8 days (P<0.05). The results of inverted phase contrast microscope and scanning electron microscope showed that BMSCs could adhere well to DBM. In the subcutaneous ectopic osteogenesis experiment, HE staining showed that at 4 and 8 weeks after operation, the more bone tissue was formed in group D than in the other 3 groups. ALP staining showed that group D had the highest ALP activity and better osteogenic expression. Compared with group A, the relative expressions of Runx2, ALP, and OCN mRNAs in group D were significantly higher than those in group A (P<0.05).ConclusionSilencing P75NTR and NGF overexpression double genes co-transfected BMSCs with DBM to construct tissue engineered bone has good ectopic osteogenic ability. By increasing NGF level and closing P75NTR apoptosis channel, it can not only improve cell activity, but also promote bone tissue regeneration.

    Release date:2020-11-27 06:47 Export PDF Favorites Scan
  • Role of R-spondin 2 on osteogenic differentiation of bone marrow mesenchymal stem cells and bone metabolism in ovariectomized mice

    Objective To investigate the effects of R-spondin 2 (Rspo2) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and bone mineral content in ovariectomized mice. Methods BMSCs were extracted from the bone marrow of the long bones of 7 4-week-old female C57BL/6 mice using whole bone marrow culture and passaged. After the cell phenotype was identified by flow cytometry, the 3rd generation cells were co-cultured with 10, 20, 40, 80, and 100 nmol/L Rspo2. Then, the cell activity and proliferative capacity were determined by cell counting kit 8 (CCK-8), and the intervention concentration of Rspo2 was screened for the subsequent experiments. The osteogenic differentiation ability of BMSCs was detected by alkaline phosphatase (ALP) staining, and the mRNA levels of osteogenesis-related genes [RUNX family transcription factor 2 (Runx2), collagen type Ⅰ alpha 1 (Col1), osteocalcin (OCN)] were detected by real-time fluorescence quantitative PCR (RT-qPCR). In addition, 18 10-week-old female C57BL/6 mice were randomly divided into sham operation group (sham group), ovariectomy group (OVX group), and OVX+Rspo2-intervention group (OVX+Rspo2 group), with 6 mice in each group. The sham group only underwent bilateral back incision and suturing, while the other two groups established osteoporosis mouse models by bilateral ovarian castration. Then, the mice were given a weekly intraperitoneal Rspo2 (1 mg/kg) treatment in OVX+Rspo2 group and saline at the same dosage in sham group and OVX group. After 12 weeks of treatment, the body mass and uterus mass of the mice were weighed in the 3 groups to assess whether the OVX model was successfully prepared; the tibia bones were stained with HE and immunohistochemistry staining to observe the changes in tibial bone mass and the expression level of Runx2 protein in the bone tissues. Blood was collected to detect the expressions of bone metabolism markers [ALP, OCN, type Ⅰ procollagen amino-terminal peptide (PINP)] and bone resorption marker [β-collagen degradation product (β-CTX)] by ELISA assay. Micro-CT was used to detect the bone microstructure changes in the tibia, and three-dimensional histomorphometric analyses were performed to analyze the trabeculae thickness (Tb.Th), trabeculae number (Tb.N), trabeculae separation (Tb.Sp), and bone volume fraction (BV/TV). Results CCK-8 assay showed that Rspo2 concentrations below 80 nmol/L were not cytotoxic (P>0.05), and the cell viability of 20 nmol/L Rspo2 group was significantly higher than that of the control group (P<0.05). Based on the above results, 10, 20, and 40 nmol/L Rspo2 were selected for subsequent experiments. ALP staining showed that the positive cell area of each concentration of Rspo2 group was significantly larger than that of the control group (P<0.05), with the highest showed in the 20 nmol/L Rspo2 group. The expression levels of the osteogenesis-related genes (Runx2, Col1, OCN) significantly increased, and the differences were significant between Rspo2 groups and control group (P<0.05) except for Runx2 in the 40 nmol/L Rspo2 group. In animal experiments, all groups of mice survived until the completion of the experiment, and the results of the body mass and uterus mass after 12 weeks of treatment showed that the OVX model was successfully prepared. Histological and immunohistochemical staining showed that the sparseness and connectivity of bone trabecula and the expression of Runx2 in the OVX group were lower than those in the sham group, whereas they were reversed in the OVX+Rspo2 group after treatment with Rspo2, and the differences were significant (P<0.05). ELISA assay showed that compared with the sham group, the serum bone metabolism markers in OVX group had an increase in ALP and a decrease in PINP (P<0.05). After Rspo2 intervention, PINP expression significantly reversed and increased, with significant differences compared to the sham group and OVX group (P<0.05). The bone resorption marker (β-CTX) was significantly higher in the OVX group than in the sham group (P<0.05), and it was significantly decreased in the OVX+Rspo2 group when compared with the OVX group (P<0.05). Compared with the sham group, Tb.Th, Tb.N, and BV/TV significantly decreased in the OVX group, while Tb.Sp significantly increased (P<0.05); after Rspo2 intervention, all of the above indexes significantly improved in the OVX+Rspo2 group (P<0.05) except Tb.Th. Conclusion Rspo2 promotes differentiation of BMSCs to osteoblasts, ameliorates osteoporosis due to estrogen deficiency, and promotes bone formation in mice.

    Release date:2024-12-13 10:50 Export PDF Favorites Scan
  • REGULATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS OSTEOGENIC AND ADIPOGENIC DIFFERENTIATIONS BY Wnt10b ADENOVIRAL VECTOR IN VITRO

    ObjectiveTo investigate the regulation of human bone marrow mesenchymal stem cells (hBMSCs) osteogenic and adipogenic differentiations mediated by Wnt10b adenoviral vector in vitro. MethodsThe hBMSCs from ilial bone tissue in adults at passage 4 were infected by Wnt10b gene expression adenoviral vector (group A), Wnt10b-shRNA adenoviral vector (group B), and empty vector (group C), and non-transfected hBMSCs served as the blank control group. Then the cells were cultured separately in the circumstance of osteogenic induction, adipogenic induction, and non-induction. The alkaline phosphatase (ALP) staining, alizarin red staining, and oil red O staining were used to detect the osteogenic and adipogenic differentiations; real-time fluorescent quantitative PCR and Western blot were used to analyze the expressions of osteoblast and adipocyte genes and proteins. ResultsThe results of ALP staining were positive after osteogenic induction, group A showed strong staining, and group B showed the weakest staining. The results of alizarin red staining showed that there were a lot of patchy confluent brown mineralized nodules in group A; a few punctate brown mineralized nodules were seen in group B; and many punctuate brown mineralized nodules were found in groups C and D. The results of oil red O staining showed strong staining in groups B, C, and D after adipogenic induction, especially in group B; scattered or small clustered staining was observed in group A. The expressions of osteoblast genes and proteins were significantly higher in group A than groups B, C, and D, and in groups C and D than group B by real-time fluorescent quantitative PCR and Western blot test; however, the expressions of adipocyte genes and proteins showed a contrary tendency. ConclusionThe high level expression of Wnt10b can enhance osteogenic differentiation of hBMSCs, and the low level expression of Wnt10b can increase adipogenic differentiation of hBMSCs.

    Release date: Export PDF Favorites Scan
  • Effects of nicotinamide mononucleotide adenylyl transferase 3 on mitochondrial function and anti-oxidative stress of rabbit bone marrow mesenchymal stem cells via regulating nicotinamide adenine dinucleotide levels

    ObjectiveTo investigate the effect of nicotinamide mononucleotide adenosyl transferase 3 (NMNAT3) on the mitochondrial function and anti-oxidative stress of rabbit bone marrow mesenchymal stem cells (BMSCs) under oxidative stress in vitro by regulating nicotinamide adenine dinucleotide (NAD+) levels.MethodsThe bone marrow of femur and tibia of New Zealand white rabbits were extracted. BMSCs were isolated and cultured in vitro by density gradient centrifugation combined with adherent culture. The third generation cells were identified by flow cytometry and multi-directional induction. Overexpression of NMNAT3 gene was transfected into rabbit BMSCs by enhanced green fluorescent protein (EGFP) labeled lentivirus (BMSCs/Lv-NMNAT3-EGFP), and then the expression of NMNAT3 was detected by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot and cell proliferation by cell counting kit 8 (CCK-8) method. BMSCs transfected with negative lentivirus (BMSCs/Lv-EGFP) and untransfected BMSCs were used as controls. The oxidative stress injury cell model was established by using H2O2 to treat rabbit BMSCs. According to the experimental treatment conditions, they were divided into 4 groups: Group A was normal BMSCs without H2O2 treatment; untransfected BMSCs, BMSCs/Lv-EGFP, and BMSCs/Lv-NMNAT3-EGFP in groups B, C, and D were treated with H2O2 simulated oxidative stress, respectively. The effects of NMNAT3 on the mitochondrial function of BMSCs under oxidative stress [changes of mitochondrial membrane potential, NAD+ and adenosine triphosphate (ATP) levels], the changes of anti-oxidative stress ability of BMSCs [reactive oxygen species (ROS) and malondialdehyde (MDA) levels, manganese superoxide dismutase (Mn-SOD) and catalase (CAT) activities], and the effects of BMSCs on senescence and apoptosis [senescence associated-β-galactosidase (SA-β-gal) staining and TUNEL staining] were detected after 24 hours of treatment.ResultsThe rabbit BMSCs were successfully isolated and cultured in vitro. The stable strain of rabbit BMSCs with high expression of NMNAT3 gene was successfully obtained by lentiviral transfection, and the expressions of NMNAT3 gene and protein significantly increased (P<0.05). There was no significant difference in the trend of cell proliferation compared with normal BMSCs. After treatment with H2O2, the function of mitochondria was damaged and apoptosis increased in all groups. However, compared with groups B and C, the group D showed that the mitochondrial function of BMSCs improved, the membrane potential increased, the level of NAD+ and ATP synthesis of mitochondria increased; the anti-oxidative stress ability of BMSCs enhanced, the levels of ROS and MDA decreased, and the activities of antioxidant enzymes (Mn-SOD, CAT) increased; and the proportion of SA-β-gal positive cells and the rate of apoptosis decreased. The differences in all indicators between group D and groups B and C were significant (P<0.05).ConclusionNMNAT3 can effectively improve the mitochondrial function of rabbit BMSCs via increasing the NAD+ levels, and enhance its anti-oxidative stress and improve the survival of BMSCs under oxidative stress conditions.

    Release date:2020-06-15 02:43 Export PDF Favorites Scan
  • HYPOXIA INDUCIBLE FACTOR 1α/2α GENES EXPRESSION IN CHONDROGENIC DIFFERENTIATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    ObjectiveTo observe the genes expression of hypoxia inducible factor 1α (HIF-1α) and HIF-2α by inducing chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) so as to provide a fundamental basis for HIF involving in the mechanism of chondrogenesis. MethodsHigh density pellet of hBMSCs was obtained by centrifugation and cultured with H-DMEM medium containing 2% fetal bovine serum (control group) and with chondrogenic medium (chondrogenic induction group) under hypoxia (2%O2) for 3 weeks. Immunohistochemistry staining was utilized to identify extracellular proteoglycan and collagen type Ⅱ at 3 weeks after culture. Western blot was applied for measuring HIF-1α and HIF-2α protein levels at 1 week after culture. Real-time quantitative PCR was performed to detect the genes expressions of HIF-1α, HIF-2α, Sox-9, collagen type Ⅱ, collagen type X, and Aggrecan at 1, 2, and 3 weeks after culture. ResultsToluidine blue staining showed sparse nucleus in the control group, and dense nucleus in the chondrogenic induction group;extracellular matrix staining was deeper in the chondrogenic induction group than the control group. Immunohistochemical staining for collagen type Ⅱ was positive in cytoplasm;when compared with the chondrogenic induction group, the control group showed sparse and light-coloured nucleus. At 1 week after culture, the protein expression levels of HIF-1α and HIF-2α in the chondrogenic induction group were significantly lower than those in the control group (t=8.345, P=0.001;t=7.683, P=0.002). When compared with control group, the HIF-1α mRNA expression was significantly down-regulated at 1 week and significantly up-regulated at 2 weeks in chondrogenic induction group (P<0.05), but no significant difference was found at 3 weeks between the 2 groups (P>0.05). And the mRNA expression of HIF-2α was significantly down-regulated and mRNA expression of Sox-9 was significantly up-regulated after chondrogenic differentiation when compared with the control group (P<0.01). The mRNA expressions of collagen type Ⅱ and collagen type X were significantly up-regulated at 2 and 3 weeks after chondrogenic differentiation when compared with the control group (P<0.05). And the mRNA expression of Aggrecan was significantly up-regulated at each time point after chondrogenic differentiation (P<0.05). ConclusionHIF-1α may involve the hBMSCs chondrogenic differentiation under hypoxia, while HIF-2α expression is depressed throughout the period and may have negative effect on differentiation.

    Release date: Export PDF Favorites Scan
  • Effect of bone morphogenetic protein 7/poly (lactide-co-glycolide) microspheres on the in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells

    ObjectiveTo evaluate the effect of bone morphogenetic protein 7 (BMP-7)/poly (lactide-co-glycolide) (PLGA) microspheres on in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs).MethodsBMP-7/PLGA microspheres were fabricated by double emulsion-drying in liquid method. After mixing BMP-7/PLGA microspheres with the chondrogenic differentiation medium, the supernatant was collected on the 1st, 3rd, 7th, 14th, and 21st day as the releasing solution. The BMSCs were isolated from the bilateral femurs and tibias of 3-5 days old New Zealand rabbits, and the 3rd generation BMSCs were divided into 2 groups: microspheres group and control group. The BMSCs in microspheres group were cultured by 200 μL BMP-7/PLGA microspheres releasing solution in the process of changing liquid every 2-3 days, while in control group were cultured by chondrogenic medium. The cell proliferation (by MTT assay) and the glycosaminoglycan (GAG) contents (by Alician blue staining) were detected after chondrogenic cultured for 1, 3, 7, 14, and 21 days. The chondrogenic differentiation of BMSCs was observed by safranine O staining, toluidine blue staining, and collagen type Ⅱ immunohistochemistry staining at 21 days.ResultsMTT test showed that BMSCs proliferated rapidly in 2 groups at 1, 3, and 7 days; after 7 days, the proliferation of BMSCs in the control group was slow and the BMSCs in microspheres group continued to proliferate rapidly. There was no significant difference of the absorbance (A) value at 1, 3, and 7 days between 2 groups (P>0.05), but theA value at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05). Compared with control group at 21 days, in microsphere group, almost all nuclei were dyed bright red by safranine O staining, almost all the nuclei appeared metachromatic purple red by toluidine blue staining, and the most nuclei were yellow or brown by immunohistochemical staining of collagen type Ⅱ. Alcian blue staining showed that the content of GAG in 2 groups increased continuously at different time points; after 7 days, the increasing trend of the control group was slow and the microspheres group continued hypersecretion. There was no significant difference of the GAG content at 1, 3, and 7 days between 2 groups (P>0.05), but the GAG content at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05).ConclusionBMP-7/PLGA microspheres prepared by double emulsion-drying in liquid method in vitro can promote proliferation and chondrogenic differentiation of rabbit BMSCs.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content