Objective To investigate effect of bone marrow mesenchymal stem cells (BMSCs) via portal vein injection on transforming growth factor-β receptor 1 (TGF-βR1) and TGF-βR2 in rats with acute liver failure (ALF). Methods Sixty male SD rats were randomly divided into a normal control group, ALF model group, and BMSCs treatment group, with 20 rats in each group. The rats of normal control group were directly sacrificed without other treatment. The ALF models were made in the rats of BMSCs treatment group and ALF model group, then were treated with BMSCs and equal volume of normal saline respectively. On day 7 after treatment, the 1-week survival situation of rats was observed, the pathological change was observed by HE staining, the apoptosis of liver cells was detected by TUNEL method, and the TGF-βR1 and TGF-βR2 proteins expressions were detected by Western blot method. Results ① The 1-week survival rate of the BMSCs treatment group was significantly higher than that of the ALF model group (P<0.05). ② In the ALF model group, the liver cells were diffuse necrosis, the lobular structure was indistinct, and a large number of bridging necrosis. In the BMSCs treatment group, the infiltrations of inflammatory cells were decreased, and the structure of hepatic lobules gradually recovered, and the normal hepatocytes were seen around it. ③ The apoptosis indexes of the BMSCs treatment group and the ALF model group were significantly higher than those in the normal control group (P<0.05), which in the BMSCs treatment group was significantly lower than that of the ALF model group (P<0.05). ④ The TGF-βR1 and TGF-βR2 proteins expressions in the liver tissues of the ALF model group were significantly higher than those of the normal control group (P<0.05), which of the BMSCs treatment group were significantly lower than those of the ALF model group (P<0.05). Conclusion BMSCs could inhibit apoptosis of hepatocytes in ALF. Its mechanism might be related to expressions of TGF-βR1 and TGF-βR1 proteins, but its specific regulatory pathway needs to be further studied.
ObjectiveTo investigate the effect of nicotinamide mononucleotide adenosyl transferase 3 (NMNAT3) on the mitochondrial function and anti-oxidative stress of rabbit bone marrow mesenchymal stem cells (BMSCs) under oxidative stress in vitro by regulating nicotinamide adenine dinucleotide (NAD+) levels.MethodsThe bone marrow of femur and tibia of New Zealand white rabbits were extracted. BMSCs were isolated and cultured in vitro by density gradient centrifugation combined with adherent culture. The third generation cells were identified by flow cytometry and multi-directional induction. Overexpression of NMNAT3 gene was transfected into rabbit BMSCs by enhanced green fluorescent protein (EGFP) labeled lentivirus (BMSCs/Lv-NMNAT3-EGFP), and then the expression of NMNAT3 was detected by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot and cell proliferation by cell counting kit 8 (CCK-8) method. BMSCs transfected with negative lentivirus (BMSCs/Lv-EGFP) and untransfected BMSCs were used as controls. The oxidative stress injury cell model was established by using H2O2 to treat rabbit BMSCs. According to the experimental treatment conditions, they were divided into 4 groups: Group A was normal BMSCs without H2O2 treatment; untransfected BMSCs, BMSCs/Lv-EGFP, and BMSCs/Lv-NMNAT3-EGFP in groups B, C, and D were treated with H2O2 simulated oxidative stress, respectively. The effects of NMNAT3 on the mitochondrial function of BMSCs under oxidative stress [changes of mitochondrial membrane potential, NAD+ and adenosine triphosphate (ATP) levels], the changes of anti-oxidative stress ability of BMSCs [reactive oxygen species (ROS) and malondialdehyde (MDA) levels, manganese superoxide dismutase (Mn-SOD) and catalase (CAT) activities], and the effects of BMSCs on senescence and apoptosis [senescence associated-β-galactosidase (SA-β-gal) staining and TUNEL staining] were detected after 24 hours of treatment.ResultsThe rabbit BMSCs were successfully isolated and cultured in vitro. The stable strain of rabbit BMSCs with high expression of NMNAT3 gene was successfully obtained by lentiviral transfection, and the expressions of NMNAT3 gene and protein significantly increased (P<0.05). There was no significant difference in the trend of cell proliferation compared with normal BMSCs. After treatment with H2O2, the function of mitochondria was damaged and apoptosis increased in all groups. However, compared with groups B and C, the group D showed that the mitochondrial function of BMSCs improved, the membrane potential increased, the level of NAD+ and ATP synthesis of mitochondria increased; the anti-oxidative stress ability of BMSCs enhanced, the levels of ROS and MDA decreased, and the activities of antioxidant enzymes (Mn-SOD, CAT) increased; and the proportion of SA-β-gal positive cells and the rate of apoptosis decreased. The differences in all indicators between group D and groups B and C were significant (P<0.05).ConclusionNMNAT3 can effectively improve the mitochondrial function of rabbit BMSCs via increasing the NAD+ levels, and enhance its anti-oxidative stress and improve the survival of BMSCs under oxidative stress conditions.
ObjectiveTo investigate whether desferrioxamine (DFO) can enhance the homing of bone marrow mesenchymal stem cells (BMSCs) and improve neovascularization in random flaps of rats.MethodsBMSCs and fibroblasts (FB) of luciferase transgenic Lewis rats were isolated and cultured. Forty 4-week-old Lewis male rats were used to form a 10 cm×3 cm rectangular flap on their back. The experimental animals were randomly divided into 4 groups with 10 rats in each group: in group A, 200 μL PBS were injected through retrobulbar venous plexus; in group B, 200 μL FB with a concentration of 1×106 cells/mL were injected; in group C, 200 μL BMSCs with a concentration of 1×106 cells/mL were injected; in group D, cells transplantation was the same as that in group C, after cells transplantation, DFO [100 mg/(kg·d)] were injected intraperitoneally for 7 days. On the 7th day after operation, the survival rate of flaps in each group was observed and calculated; the blood perfusion was observed by laser speckle imaging. Bioluminescence imaging was used to detect the distribution of transplanted cells in rats at 30 minutes and 1, 4, 7, and 14 days after operation. Immunofluorescence staining was performed at 7 days after operation to observe CD31 staining and count capillary density under 200-fold visual field and to detect the expressions of stromal cell derived factor 1 (SDF-1), epidermal growth factor (EGF), fibroblast growth factor (FGF), and Ki67. Transplanted BMSCs were labeled with luciferase antibody and observed by immunofluorescence staining whether they participated in the repair of injured tissues.ResultsThe necrosis boundary of ischemic flaps in each group was clear at 7 days after operation. The survival rate of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Laser speckle imaging showed that the blood perfusion units of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Bioluminescence imaging showed that BMSCs gradually migrated to the ischemia and hypoxia area and eventually distributed to the ischemic tissues. The photon signal of group D was significantly stronger than that of other groups at 14 days after operation (P<0.05). CD31 immunofluorescence staining showed that capillary density in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). The expressions of SDF-1, EGF, FGF, and Ki67 in groups C and D were significantly stronger than those in groups A and B, and in group D than in group C. Luciferase-labeled BMSCs were expressed in the elastic layer of arteries, capillaries, and hair follicles at 7 days after transplantation.ConclusionDFO can enhance the migration and homing of BMSCs to the hypoxic area of random flap, accelerate the differentiation of BMSCs in ischemic tissue, and improve the neovascularization of ischemic tissue.
ObjectiveTo observe the change of stromal cell-derived factor 1α/cysteine X cysteine receptor 4 (SDF-1α/CXCR4) signaling pathway during the process of axial stress stimulation promoting bone regeneration, and to further explore its mechanism.MethodsA total of 72 male New Zealand white rabbits were selected to prepare the single cortical bone defect in diameter of 8 mm at the proximal end of the right tibia that repaired with deproteinized cancellous bone. All models were randomly divided into 3 groups (n=24). Group A was treated with intraperitoneally injection of PBS; Group B was treated with stress stimulation and intraperitoneally injection of PBS; Group C was treated with stress stimulation and intraperitoneally injection of AMD3100 solution. The X-ray films were taken and Lane-Sandhu scores of bone healing were scored at 2, 4, 8, and 12 weeks after operation, while specimens were harvested for HE staining, immunohistochemical staining of vascular endothelial growth factor (VEGF) and CXCR4, and Western blot (SDF-1α and CXCR4). The bone healing area was scanned by Micro-CT at 12 weeks after operation, and the volume and density of new bone were calculated.ResultsX-ray film showed that the Lane-Sandhu scores of bone healing in group B were significantly higher than those in groups A and C at 4, 8, and 12 weeks after operation (P<0.05). Micro-CT scan showed that the bone defect was repaired in group B and the pulp cavity was re-passed at 12 weeks after operation. The volume and density of new bone were higher in group B than in groups A and C (P<0.05). HE staining showed that the new bone growth in bone defect area and the degradation of scaffolds were faster in group B than in groups A and C after 4 weeks. The immunohistochemical staining showed that the expressions of VEGF and CXCR4 in 3 groups reached the peak at 4 weeks, and group B was higher than groups A and C (P<0.05). Western blot analysis showed that the expressions of SDF-1α and CXCR4 in group B were significantly higher than those in groups A and C at 4 and 8 weeks after operation (P<0.05).ConclusionAxial stress stimulation can promote the expression of SDF-1α in bone defect tissue, activate and regulate the CXCR4 signal collected by marrow mesenchymal stem cells, and accelerate bone regeneration in bone defect area.
ObjectiveTo develop an anti-inflammatory poly (lactic-co-glycolic acid) (PLGA) scaffold by loading xanthohumol, and investigate its anti-inflammatory and cartilage regeneration effects in goats. Methods The PLGA porous scaffolds were prepared by pore-causing agent leaching method, and then placed in xanthohumol solution for 24 hours to prepare xanthohumol-PLGA scaffolds (hereinafter referred to as drug-loaded scaffolds). The PLGA scaffolds and drug-loaded scaffolds were taken for general observation, the pore diameter of the scaffolds was measured by scanning electron microscope, the porosity was calculated by the drainage method, and the loading of xanthohumol on the scaffolds was verified by Fourier transform infrared (FTIR) spectrometer. Then the two scaffolds were co-cultured with RAW264.7 macrophages induced by lipopolysaccharide for 24 hours, and the expressions of inflammatory factors [interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α)] were detected by RT-PCR and Western blot to evaluate the anti-inflammatory properties in vitro of two scaffolds. Bone marrow mesenchymal stem cells (BMSCs) was obtained from bone marrow of a 6-month-old female healthy goat, cultured by adherent method, and passaged in vitro. The second passage cells were seeded on two scaffolds to construct BMSCs-scaffolds, and the cytocompatibility of scaffolds was observed by live/dead cell staining and cell counting kit 8 (CCK-8) assay. The BMSCs-scaffolds were cultured in vitro for 6 weeks, aiming to verify its feasibility of generating cartilage in vitro by gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, and biochemical analysis. Finally, the two kinds of BMSCs-scaffolds cultured in vitro for 6 weeks were implanted into the goat subcutaneously, respectively. After 4 weeks, gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, biochemical analysis, and RT-PCR were performed to comprehensively evaluate the anti-inflammatory effect in vivo and promotion of cartilage regeneration of the drug-loaded scaffolds. Results The prepared drug-loaded scaffold had a white porous structure with abundant, continuous, and uniform pore structures. Compared with the PLGA scaffold, there was no significant difference in pore size and porosity (P>0.05). FTIR spectrometer analysis showed that xanthohumol was successfully loaded to PLGA scaffolds. The in vitro results demonstrated that the gene and protein expressions of inflammatory cytokines (IL-1β and TNF-α) in drug-loaded scaffold significantly decreased than those in PLGA scaffold (P<0.05). With the prolongation of culture, the number of live cells increased significantly, and there was no significant difference between the two scaffolds (P>0.05). The in vitro cartilage regeneration test indicated that the BMSCs-drug-loaded scaffolds displayed smooth and translucent appearance with yellow color after 6 weeks in vitro culture, and could basically maintained its original shape. The histological and immunohistochemical stainings revealed that the scaffolds displayed typical lacunar structure and cartilage-specific extracellular matrix. In addition, quantitative data revealed that the contents of glycosaminoglycan (GAG) and collagen type Ⅱ were not significantly different from BMSCs-PLGA scaffolds (P>0.05). The evaluation of cartilage regeneration in vivo showed that the BMSCs-drug-loaded scaffolds basically maintained their pre-implantation shape and size at 4 weeks after implantation in goat, while the BMSCs-PLGA scaffolds were severely deformed. The BMSCs-drug-loaded scaffolds had typical cartilage lacuna structure and cartilage specific extracellular matrix, and no obvious inflammatory cells infiltration; while the BMSCs-PLGA scaffolds had a messy fibrous structure, showing obvious inflammatory response. The contents of cartilage-specific GAG and collagen type Ⅱ in BMSCs-drug-loaded scaffolds were significantly higher than those in BMSCs-PLGA scaffolds (P<0.05); the relative gene expressions of IL-1β and TNF-α were significantly lower than those in BMSCs-PLGA scaffolds (P<0.05). ConclusionThe drug-loaded scaffolds have suitable pore size, porosity, cytocompatibility, and good anti-inflammatory properties, and can promote cartilage regeneration after implantation with BMSCs in goats.
This study aimed to comprehensively evaluate the biological activity in different passage populations of mesenchymal stem cells (BMSCs) derived from bone marrow in ovariectomy osteoporotic rats (named OVX-rBMSCs), providing experimental basis for new osteoporotic drug development and research. OVX-rBMSCs were isolated and cultured in vitro by the whole bone marrow adherent screening method. The morphological observation, cell surface markers (CD29, CD45, CD90) detection, cell proliferation, induced differentiation experimental detection were performed to evaluate the biological activity of Passage 1, 2, 3, 4 populations (P1, P2, P3, P4) OVX-rBMSCs. The results showed that whole bone marrow adherent culture method isolated and differentially subcultured OVX-The morphology of P4 OVX-rBMSCs was identical fibroblast-like and had the characteristics of ultrastructure of stem cells. The CD29 positive cells rate, CD90 positive cells rate, cell proliferation index, and the osteogenic, adipogenic, chondrogenic differentiation capacities of P4 OVX-rBMSCs were significantly better than those of other populations (P < 0.05). OVX-rBMSCs purity and biological activity were gradually optimized with the passaged, and among them P4 cells were superior to all the other populations. Based on these results, we report that the P4 OVX-rBMSCs model developed in this study can be used to develop a new and effective medical method for osteoporotic drug screening.
Objective To investigate the ability of gene-loaded lipopolysaccharide-amine nanopolymersomes (LNPs) in inducing osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by in vitro gene transfection, where LNPs were used as a non-viral cationic carrier, and their properties were optimized during synthesis. Methods LNPs were synthesized by a graft-copolymerization method, and the effects of different pH environments during synthesis on physicochemical properties of LNPs and LNPs/plasmid of bone morphogenetic protein 2-green fluorescent protein (pBMP-2-GFP) complexes were explored. Then, optimized LNPs with maximum transfection efficiency and safe cytotoxicity in rat BMSCs were identified by cytotoxicity and transfection experiments in vitro. Thereafter, the optimized LNPs were used to mediate pBMP-2-GFP to transfect rat BMSCs, and the influences of LNPs/pBMP-2-GFP on osteogenic differentiation of BMSCs were evaluated by monitoring the cell morphology, concentration of BMP-2 protein, activity of alkaline phosphatase (ALP), and the formation of calcium nodules. Results The nitrogen content, particle size, and zeta potential of LNPs synthesized at pH 8.5 were lower than those of the other pH groups, with the lowest cytotoxicity (96.5%±1.4%) and the highest transfection efficiency (98.8%±0.1%). After transfection treatment, within the first 4 days, BMSCs treated by LNPs/pBMP-2-GFP expressed BMP-2 protein significantly higher than that treated by Lipofectamine2000 (Lipo)/pBMP-2-GFP, polyethylenimine 25K/pBMP-2-GFP, and the blank (non-treated). At 14 days after transfection, ALP activity in BMSCs treated by LNPs/pBMP-2-GFP was higher than that treated by Lipo/pBMP-2-GFP and the blank, comparable to that induced by osteogenic medium; with alizarin red staining, visible calcium nodules were found in BMSCs treated by LNPs/pBMP-2-GFP or osteogenic medium, but absent in BMSCs treated by Lipo/pBMP-2-GFP or the blank with apoptosis. At 21 days after transfection, transparent massive nodules were discovered in BMSCs treated by LNPs/pBMP-2-GFP, and BMSCs exhibited the morphologic features of osteoblasts. Conclusion LNPs synthesized at pH 8.5 has optimal transfection efficiency and cytotoxicity, they can efficiently mediate pBMP-2-GFP to transfect BMSCs, and successfully induce their directional osteogenic differentiation, whose inducing effect is comparable to the osteogenic medium. The results suggest that gene transfection mediated by LNPs may be a convenient and effective strategy in inducing directional differentiation of stem cells.
ObjectiveTo review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. MethodsThe literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. ResultsArticular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. ConclusionDue to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.
The regulation of epigenetics on bone marrow mesenchymal stem cells (BMSCs) has been a research hot spot in medical area. This paper mainly summarizes the progress of the regulation of DNA methylation, histone acetylation, small interfering RNA (siRNA) induced gene silence and microRNA (miRNA) on BMSCs. Our analysis shows that the regulation of epigenetics on BMSCs plays a significant role in the repair of bone tissue, nervous tissue and cardiac muscle.
Objective To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process. MethodsThe identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot. ResultsWhen compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A (P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D (P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased (P<0.05), while NSE, MAP-2, and GFAP genes significantly increased (P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E (P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E (P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E (P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E (P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E (P<0.05). Conclusion Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.