Objective To evaluate the effectiveness of Confidence high viscosity bone cement system and postural reduction in treating acute severe osteoporotic vertebral compression fracture (OVCF). Methods Between June 2004 and June2009, 34 patients with acute severe OVCF were treated with Confidence high viscosity bone cement system and postural reduction. There were 14 males and 20 females with an average age of 72.6 years (range, 62-88 years). All patients had single thoracolumbar fracture, including 4 cases of T11, 10 of T12, 15 of L1, 4 of L2, and 1 of L3. The bone density measurement showed that T value was less than —2.5. The time from injury to admission was 2-72 hours. All cases were treated with postural reduction preoperatively. The time of reduction in over-extending position was 7-14 days. All patients were injected unilaterally. The injected volume of high viscosity bone cement was 2-6 mL (mean, 3.2 mL). Results Cement leakage was found in 3 cases (8.8%) during operation, including leakage into intervertebral space in 2 cases and into adjacent paravertebral soft tissue in 1 case. No cl inical symptom was observed and no treatment was pearformed. No pulmonary embolism, infection, nerve injury, or other complications occurred in all patients. All patients were followed up 12-38 months (mean, 18.5 months). Postoperatively, complete pain rel ief was achievedin 31 cases and partial pain refief in 3 cases; no re-fracture or loosening at the interface occurred. At 3 days after operation and last follow-up, the anterior and middle vertebral column height, Cobb angle, and visual analogue scale (VAS) score were improved significantly when compared with those before operation (P lt; 0.05);and there was no significant difference between 3 days and last follow-up (P gt; 0.05). Conclusion Confidence high viscosity bone cement system and postural reduction can be employed safely in treating acute severe OVCF, which has many merits of high viscosity, long time for injection, and easy-to-control directionally.
Objective To summarize the latest research progress of bone cement type femoral head replacement in the treatment of unstable intertrochanteric fractures in elderly patients. Methods The literature on the application of bone cement type femoral head replacement for unstable intertrochanteric fractures in elderly patients both domestically and internationally was reviewed, and the findings in aspects of selection of prosthesis types, proximal femoral reconstruction methods, postoperative complications, and rehabilitation were summarized and analyzed. Results The bone cement type femoral head replacement has shown significant effectiveness in the treatment of unstable intertrochanteric fractures in elderly patients. The surgery provides immediate stability, allowing patients to quickly bear weight and regain walking function, thereby reducing the incidences of postoperative complications and mortality. However, due to the generally poor physical condition and low surgical tolerance of elderly patients, the risk of postoperative complications significantly increases, which has a significant impact on patients’ postoperative recovery. Common complications include deep vein thrombosis, bone cement implantation syndrome, joint dislocation, prosthesis loosening, and periprosthetic fractures. Therefore, despite the apparent short-term effectiveness of the surgery, it is crucial to emphasize the prevention and management of postoperative complications to improve the long-term prognosis of elderly patients. Conclusion For unstable intertrochanteric fractures in elderly patients, when choosing bone cement type femoral head replacement, it is necessary to strictly adhere to surgical indications, reduce the occurrence of complications, and improve the patients’ quality of life through refined preoperative evaluation, intraoperative operation, and effective postoperative management.
ObjectiveTo analyze the correlation between bone cement cortical leakage and injury degree of osteoporotic vertebral compression fracture (OVCF) after percutaneous kyphoplasty (PKP), and to provide guidance for reducing clinical complications. Methods A clinical data of 125 patients with OVCF who received PKP between November 2019 and December 2021 and met the selection criteria was selected and analyzed. There were 20 males and 105 females. The median age was 72 years (range, 55-96 years). There were 108 single-segment fractures, 16 two-segment fractures, and 1 three-segment fracture. The disease duration ranged from 1 to 20 days (mean, 7.2 days). The amount of bone cement injected during operation was 2.5-8.0 mL, with an average of 6.04 mL. Based on the preoperative CT images, the standard S/H ratio of the injured vertebra was measured (S: the standard maximum rectangular area of the cross-section of the injured vertebral body, H: the standard minimum height of the sagittal position of the injured vertebral body). Based on postoperative X-ray films and CT images, the occurrence of bone cement leakage after operation and the cortical rupture at the cortical leakage site before operation were recorded. The correlation between the standard S/H ratio of the injured vertebra and the number of cortical leakage was analyzed. Results Vascular leakage occurred in 67 patients at 123 sites of injured vertebrae, and cortical leakage in 97 patients at 299 sites. Preoperative CT image analysis showed that there were 287 sites (95.99%, 287/299) of cortical leakage had cortical rupture before operation. Thirteen patients were excluded because of vertebral compression of adjacent vertebrae. The standard S/H ratio of 112 injured vertebrae was 1.12-3.17 (mean, 1.67), of which 87 cases (268 sites) had cortical leakage. The Spearman correlation analysis showed a positive correlation between the number of cortical leakage of injured vertebra and the standard S/H ratio of injured vertebra (r=0.493, P<0.001). ConclusionThe incidence of cortical leakage of bone cement after PKP in OVCF patients is high, and cortical rupture is the basis of cortical leakage. The more severe the vertebral injury, the greater the probability of cortical leakage.
Objective To summarize the effectiveness of bone cement combined with screws for repairing tibial plateau defect in total knee arthroplasty (TKA). Methods Between March 2013 and March 2016, 30 patients were treated with TKA and bone cement combined with screws for repairing tibial plateau defect. Of the 30 patients, 8 were male and 22 were female, with an average age of 64.7 years (range, 55-71 years). And 17 cases were involved in left knees and 13 cases in right knees; 22 cases were osteoarthritis and 8 cases were rheumatoid arthritis. The disease duration ranged from 9 to 27 months (mean, 14 months). Knee Society Score (KSS) was 41.63±6.76. Hospital for Special Surgery Knee Score (HSS) was 38.10±7.00. The varus deformity of knee were involved in 19 cases and valgus deformity in 11 cases. According to the Rand classification criteria, tibial plateau defect were rated as type Ⅱb. Results All incisions healed by first intention, without infection or deep vein thrombosis. All the patients were followed up 27.5 months on average (range, 10-42 months). At last follow-up, HSS score was 90.70±4.18 and KSS score was 93.20±3.75, showing significant differences when compared with preoperative values (t=–58.014, P=0.000; t=–60.629, P=0.000). Conclusion It is a simple and safe method to repair tibial plateau defect complicated with varus and valgus deformities with bone cement and srews in TKA.
Objective To evaluate the effectiveness of percutaneous vertebroplasty (PVP) in the treatment of osteoporotic vertebral compression fracture (OVCF) through unilateral puncture of extreme extrapedicular approach and bilateral injection of bone cement. Methods The clinical data of 156 patients with OVCF who met the selection criteria between January 2014 and January 2016 were retrospectively analyzed. All patients were treated with PVP through unilateral puncture. According to different puncture methods, the patients were divided into two groups. In group A, 72 cases were performed PVP through the unilateral puncture of extreme extrapedicular approach and bilateral injection of bone cement, while in group B, 84 cases were performed PVP through the unilateral puncture of transpedicular approach. There was no significant difference in general data of gender, age, weight, bone mineral density, lesion segment, and disease duration between the two groups (P>0.05). The radiation exposure time, operation time, volume of bone cement injection, rate of bone cement leakage, pre- and post-operative visual analogue scale (VAS) score and local Cobb angle were recorded and compared between the two groups. Results There was no significant difference in radiation exposure time and operation time between the two groups (P>0.05), but the volume of bone cement injection in group A was significantly more than that in group B (t=20.024, P=0.000). Patients in both groups were followed up 24-32 months (mean, 26.7 months). There were 9 cases (12.5%) and 10 cases (11.9%) of cement leakage in group A and B, respectively. There was no significant difference in the incidence (χ2=0.013, P=0.910). No neurological symptoms and discomfort was found in the two groups. The VAS scores of the two groups were significantly improved after operation (P<0.05). There was no significant difference in local Cobb angle between before and after operation in group A (P>0.05); but the significant difference was found in local Cobb angle between at 2 years after operation and other time points in group B (P<0.05). The VAS score and local Cobb angle in group A were significantly better than those in group B at 2 years after operation (P<0.05). Conclusion It is simple, safe, and feasible to use the unilateral puncture of extreme extrapedicular approach and bilateral injection of bone cement to treat OVCF. Compared with the transpedicular approach, the bone cement can be distributed bilaterally in the vertebral body without prolonging the operation time and radiation exposure time, and has an advantage of decreasing long-term local Cobb angle losing of the fractured vertebrae.
ObjectiveTo explore the effectiveness of using antibiotic bone cement-coated plates internal fixation technology as a primary treatment for Gustilo type ⅢB tibiofibular open fractures. Methods The clinical data of 24 patients with Gustilo type ⅢB tibiofibular open fractures who were admitted between January 2018 and December 2021 and met the selection criteria was retrospectively analyzed. Among them, there were 18 males and 6 females, aged from 25 to 65 years with an average age of 45.8 years. There were 3 cases of proximal tibial fracture, 6 cases of middle tibial fracture, 15 cases of distal tibial fracture, and 21 cases of fibular fracture. The time from injury to emergency surgery ranged from 3 to 12 hours, with an average of 5.3 hours. All patients had soft tissue defects ranging from 10 cm×5 cm to 32 cm×15 cm. The time from injury to skin flap transplantation for wound coverage ranged from 1 to 7 days, with an average of 4.1 days, and the size of skin flap ranged from 10 cm×5 cm to 33 cm×15 cm. Ten patients had bone defects with length of 2-12 cm (mean, 7.1 cm). After emergency debridement, the tibial fracture end was fixed with antibiotic bone cement-coated plates, and the bone defect area was filled with antibiotic bone cement. Within 7 days, the wound was covered with a free flap, and the bone cement was replaced while performing definitive internal fixation of the fracture. In 10 patients with bone defect, all the bone cement was removed and the bone defect area was grafted after 7-32 weeks (mean, 11.8 weeks). The flap survival, wound healing of the affected limb, complications, and bone healing were observed after operation, and the quality of life was evaluated according to the short-form 36 health survey scale (SF-36 scale) [including physical component summary (PCS) and mental component summary (MCS) scores] at 1 month, 6 months after operation, and at last follow-up. ResultsAll 24 patients were followed up 14-38 months (mean, 21.6 months). All the affected limbs were successfully salvaged and all the transplanted flaps survived. One case had scar hyperplasia in the flap donor site, and 1 case had hypoesthesia (grade S3) of the skin around the scar. There were 2 cases of infection in the recipient area of the leg, one of which was superficial infection after primary flap transplantation and healed after debridement, and the other was sinus formation after secondary bone grafting and was debrided again 3 months later and treated with Ilizarov osteotomy, and healed 8 months later. The bone healing time of the remaining 23 patients ranged from 4 to 9 months, with an average of 6.1 months. The scores of PCS were 44.4±6.5, 68.3±8.3, 80.4±6.9, and the scores of MCS were 59.2±8.2, 79.5±7.8, 90.0±6.6 at 1 month, 6 months after operation, and at last follow-up, respectively. The differences were significant between different time points (P<0.05). ConclusionAntibiotic bone cement-coated plates internal fixation can be used in the primary treatment of Gustilo type ⅢB tibiofibular open fractures, and has the advantages of reduce the risk of infection in fracture fixation, reducing complications, and accelerating the functional recovery of patients.
ObjectiveTo compare the effect of percutaneous kyphoplasty (PKP) with different phases bone cement for treatment of osteoporotic vertebral compression fracture (OVCF).MethodsThe clinical data of 219 OVCF patients who treated with PKP and met the selection criteria between June 2016 and May 2018 were retrospectively analyzed. According to the different time of intraoperative injection of bone cement, they were divided into observation group [116 cases, intraoperative injection of polymethyl methacrylate (PMMA) bone cement in low-viscosity wet-sand phase)] and control group (103 cases, intraoperative injection of PMMA bone cement in low-viscosity wire-drawing phase). There was no significance in general date of gender, age, disease duration, body mass index, bone mineral density T value, fracture vertebral body, preoperative fracture severity of the responsible vertebral body, anterior height ratio of the responsible vertebral body, preoperative pain visual analogue scale (VAS) score, and Oswestry disability index (ODI) between the two groups (P>0.05). The VAS score and ODI score were used to evaluate the improvement of patients’ symptoms at immediate, 2 days, 3 months after operation and at last follow-up. At 1 day, 3 months after operation, and at last follow-up, X-ray film and CT of spine were reexamined to observe the distribution of bone cement in the vertebral body, bone cement leakage, and other complications. During the follow-up, the refracture rate of the responsible vertebral body and the fracture rate of the adjacent vertebral body were recorded.ResultsThe injection amount of bone cement in the observation group and control group were (4.53±0.45) mL and (4.49±0.57) mL, respectively, showing no significant difference between the two groups (t=1.018, P=0.310). Patients in both groups were followed up 6-18 months (mean, 13.3 months). There were 95 cases (81.9%) and 72 cases (69.9%) of the bone cement distribution range more than 49% of the cross-sectional area of the vertebral body in the observation group and the control group, respectively, showing significant difference in the incidence between the two groups (χ2=4.334, P=0.037). The VAS score and ODI score of the postoperative time points were significantly improved compared with those before operation (P<0.05), and there were significant differences among the postoperative time points (P<0.05). The VAS score and ODI score of the observation group were significantly better than those of the control group (P<0.05) at immediate, 2 days, and 3 months after operation, and there was no significant difference between the two groups at last follow-up (P>0.05). At 1 day after operation, the cement leakage occurred in 18 cases of the observation group (8 cases of venous leakage, 6 cases of paravertebral leakage, 4 cases of intradiscal leakage) and in 22 cases of the control group (9 cases of venous leakage, 8 cases of paravertebral leakage, 5 cases of intradiscal leakage). There was no significant difference between the two groups (P>0.05). During the follow-up, 5 cases (4.3%) in the observation group, 12 cases (11.7%) in the control group had responsible vertebral refracture, and 6 cases (5.2%) in the observation group and 14 cases (13.6%) in the control group had adjacent vertebral fracture, the differences were significant (χ2=4.105, P=0.043; χ2=4.661, P=0.031).ConclusionBone cement injection with wet-sand phase in PKP is beneficial for the bone cement evenly distributed, strengthening the responsible vertebral, relieving the short-term pain after operation, decreasing the rate of responsible vertebral refracture and adjacent vertebral fracture without increasing the incidence of relevant complications and can enhance the effectiveness.
Objective To investigate the effectiveness of homemade antibiotic bone cement rod in the treatment of tibial screw canal osteomyelitis by Masquelet technique. Methods A clinical data of 52 patients with tibial screw canal osteomyelitis met the criteria between October 2019 and September 2020 was retrospectively analyzed. There were 28 males and 24 females, with an average age of 38.6 years (mean, 23-62 years). The tibial fractures were treated with internal fixation in 38 cases and external fixation in 14 cases. The duration of osteomyelitis was 6 months to 20 years with a median of 2.3 years. The bacterial culture of wound secretions showed 47 positive cases, of which 36 cases were infected with single bacteria and 11 cases were infected with mixed bacteria. After thorough debridement and removal of internal and external fixation devices, the locking plate was used to fixed the bone defect. The tibial screw canal was filled with the antibiotic bone cement rod. The sensitive antibiotics were given after operation and the 2nd stage treatment was performed after infection control. The antibiotic cement rod was removed and the bone grafting in the induced membrane was performed. After operation, the clinical manifestations, wound, inflammatory indexes, and X-ray films were monitored dynamically, and the postoperative bone infection control and bone graft healing were evaluated. Results Both patients successfully completed the two stages of treatments. All patients were followed up after the 2nd stage treatment. The follow-up time was 11 to 25 months (mean, 18.3 months). One patient had poor wound healing and the wound healed after enhanced dressing change. X-ray film showed that the bone grafting in the bone defect healed and the healing time was 3-6 months, with an average of 4.5 months. The patient had no recurrence of infection during the follow-up period. Conclusion For the tibial screw canal osteomyelitis, the homemade antibiotic bone cement rod can reduce the recurrence rate of infection and obtain a good effectiveness, and has the advantages of simple operation and less postoperative complications.
ObjectiveTo discuss the safety and effectiveness of the improved technique by comparing the effects of low temperature bone cement infusion before and after the improvement in the percutaneous vertebroplasty (PVP).MethodsThe clinical data of 170 patients (184 vertebrae) with osteoporotic vertebral compression fracture who met the selection criteria between January 2016 and January 2018 were retrospectively analyzed. All patients were treated with PVP by low-temperature bone cement perfusion technology. According to the technical improvement or not, the patients were divided into two groups: the group before the technical improvement (group A, 95 cases) and the group after the technical improvement (group B, 75 cases). In group A, the patients were treated by keeping the temperature of bone cement at 0℃ and parallel puncture; in group B, the patients were treated by increasing the temperature of bone cement or reducing the time of bone cement in ice salt water and cross puncture. There was no significant difference in gender, age, disease duration, T value of bone mineral density, operative segment, and preoperative vertebral compression rate, visual analogue scale (VAS) score between the two groups (P>0.05). CT examination was performed immediately after operation, and the leakage rate of bone cement was calculated. The amount of bone cement perfusion and the proportion of bone cement in contact with the upper and lower endplates at the same time were compared between the two groups. The vertebral compression rate was calculated and the VAS score was used to evaluate the pain before operation, at immediate after operation, and last follow-up.ResultsThere was no complication such as incision infection, spinal nerve injury, or pulmonary embolism in both groups. There was no significant difference in the amount of bone cement perfusion between groups A and B (t=0.175, P=0.861). There were 38 vertebral bodies (36.89%) in group A and 49 vertebral bodies (60.49%) in group B exposed to bone cement contacting with the upper and lower endplates at the same time, showing significant difference (χ2=10.132, P=0.001). Bone cement leakage occurred in 19 vertebral bodies (18.45%) in group A and 6 vertebral bodies (7.41%) in group B, also showing significant difference (χ2=4.706, P=0.030). The patients in group A and group B were followed up (13.3±1.2) months and (11.5±1.1) months, respectively. The vertebral compression rates of the two groups at immediate after operation were significantly lower than those before operation (P<0.05), but the vertebral compression rate of group A at last follow-up was significantly higher than that at immediate after operation (P<0.05), and there was no significant difference in group B between at immediate after operation and at last follow-up (P>0.05). The VAS scores of the two groups at immediate after operation were significantly lower than those before operation (P<0.05); but the VAS scores of group A at last follow-up were significantly higher than those at immediate after operation (P<0.05) and there was no siginificant difference in group B (P>0.05). There was no significant difference in VAS scores between the two groups at immediate after operation (t=0.380, P=0.705); but at last follow-up, VAS score in group B was significantly lower than that in group A (t=3.627, P=0.000).ConclusionThe improved advanced low-temperature bone cement perfusion technology during PVP by increasing the viscosity of bone cement combined with cross-puncture technology, can reduce bone cement leakage, improve the distribution of bone cement in the vertebral body, and reduce the risk of vertebral collapse, and achieve better effectiveness.
Objective To investigate the effectiveness of posterior short-segmental fixation with bone cement augmentation in treatment of stage Ⅲ Kümmell’s disease with spinal canal stenosis. Methods Between June 2012 and January 2017, 36 patients with stage Ⅲ Kümmell’s disease and spinal canal stenosis were treated by posterior short-segmental fixation and bone cement augmentation. There were 12 males and 24 females, aged 55-83 years (mean, 73.5 years). The disease duration ranged from 2 to 8 months, with an average of 4.6 months. Preoperative bone mineral density examination showed that all patients had different degrees of osteoporosis in the spines. The lesion segments included T10 in 4 cases, T11 in 7 cases, T12 in 8 cases, L1 in 9 cases, and L2 in 8 cases. The preoperative neural function was classified as grade B in 4 cases, grade C in 12 cases, grade D in 13 cases, and grade E in 7 cases according to Frankle classification. The operation time, intraoperative blood loss, and the volume of injected bone cement, and hospital stay were recorded. The visual analogue scale (VAS) score, Oswestry Disability Index (ODI), kyphotic Cobb angle, and the height of anterior edge of injured vertebra were recorded before operation, at 1 week after operation, and at last follow-up; and the leakage of bone cement was observed. Results All operations were completed successfully. The operation time was 90-145 minutes (mean, 110.6 minutes); the intraoperative blood loss was 198-302 mL (mean, 242.5 mL); the volume of injected bone cement was 8.3-10.5 mL (mean, 9.2 mL); the hospital stays were 7-12 days (mean, 8.3 days). All patients were followed up 12-26 months (mean, 24.5 months). At 1 week after operation, the neural function was classified as grade B in 2 cases, grade C in 8 cases, grade D in 12 cases, and grade E in 14 cases, which was significantly improved when compared with that before operation (Z=2.000, P=0.047). The VAS score, ODI, the height of anterior edge of injured vertebra, and Cobb angle were significantly improved at 1 week and last follow-up when compared with preoperative values (P<0.05); but there was no significant difference between 1 week and last follow-up (P>0.05). Two cases had asymptomatic cement leakage to the intervertebral disc at 1 week after operation; and 1 case had adjacent vertebral fracture at 8 months after operation. No complication such as loosening or breaking of internal fixator occurred during the follow-up. Conclusion Posterior short-segmental fixation with bone cement augmentation is a safe and effective surgical scheme for stage Ⅲ Kümmell’s disease combined with spinal canal stenosis, which can avoid the aggravation of nerve injury and complications related to staying in bed.