west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "biomechanic" 96 results
  • Biomechanical Study of Selflocking Cerclage Band Made of Degradable Material in the Fixation of Fractures

    摘要:目的:研究生物降解聚DL乳酸(PDLLA)自锁式捆绑带固定骨折的生物力学性能。方法:80只新西兰大白兔随机分为两组,建立股骨干非负重骨折动物模型,应用生物降解自锁式捆绑带固定骨折为实验组,钢丝固定骨折为对照组,分别于术后1、4、8、12周行生物力学检查进行比较。结果:捆绑带组在术后4、8、12周均比钢丝组的弯曲强度高,但4周、12周时Pgt;005,无统计学差异,8周时Plt;005,提示有统计学差异。离体同种固定物不同时间段抗拉强度自身比较:钢丝固定术后4阶段抗拉强度比较Pgt;005,任何两两比较都没有统计学差异,抗拉强度未随术后时间延长发生明显下降。捆绑带固定术后4周与术后1周比较Pgt;005,抗拉强度无明显降低,但术后8周和术后12周时Plt;005,抗拉强度明显下降。结论:生物降解自锁式捆绑带在非负重骨折治疗中可发挥良好的固定作用。生物降解自锁式捆绑带降解时,应力传导促进了骨折的愈合。Abstract: Objective: To study the biomechanics function of selflocking cerclage band made of biodegradable material polyDLlactic acid (PDLLA) in the fixation of fractures. Methods: Eighty rabbits were divided into two groups. Femur fracture models were made. Fractures were fixed using biodegradable selflocking cerclage band in experimental group and metal fixation material in control group. The biomechanics was analyzed and compared after 1, 4, 8 and 12 weeks respectively. Results: The bending strength of experimental group is more ber than that of control group after 4, 8 and 12 weeks, but it was not statistically significant at 4 and 12 weeks (Pgt;005). It was statistically significant at 8 weeks (Plt;005). The tensile strength of the same cerclage instrument was compared at different stage in vitro, and the result of the control group was not statistically significant at the four stage (〖WTBX〗P〖WTBZ〗gt;005). Regarding the changes of tensile strength of the cerclage instrument at different stage, the result of the experimental group was not statistically significant after 1 and 4 weeks (Pgt;005). However, the decrease of tensile strength was statistically significant after 8 and 12 weeks (Plt;005). Conculsion: Biodegradable selflocking cerclage band could be used in thetreatment of nonweightbearing fractures. The stress force conducting promotes healing of fracture when the selflocking biodegradable cerclage band degrades.

    Release date:2016-09-08 10:12 Export PDF Favorites Scan
  • Biomechanical comparison of three kinds of fixation instruments for calcaneal osteotomy

    ObjectiveTo compare the biomechanical characteristics of self-made nickel-titanium shape memory alloy stepped plate with calcaneal plate and cannulated compression screws in fixing calcaneal osteotomy.MethodsCalcaneal osteotomy was operated on 6 fresh-frozen lower limbs collected from donors. Then three kinds of fixation materials were applied in random, including the self-made nickel-titanium shape memory alloy stepped plate (group A), calcaneal plate (group B), and cannulated compression screws (group C). Immediately after fixation, axial loading of 20-600 N and 20 N/s in speed was introduced to record the biomechanical data including maximum displacement, elastic displacement, and maximum load. Then fatigue test was performed (5 Hz in frequency and repeat 3 000 times) and the same axial loading was introduced to collect the biomechanical data. Finally, the axial compression stiffness before and after fatigue test were calculated.ResultsThere was no significant difference in the axial compression stiffness between pre- and post-fatigue test in each group (P>0.05). However, the axial compression stiffness was significant higher in group A than that in groups B and C both before and after fatigue test (P<0.05). No significant difference was found between group B and group C (P>0.05).ConclusionSelf-made nickel-titanium shape memory alloy stepped plate is better than calcaneal plate and cannulated compression screws in axial load stiffness after being used to fix calcaneal osteotomy.

    Release date:2018-02-07 03:21 Export PDF Favorites Scan
  • Research progress on biomechanics for internal fixation in tibial plateau fracture

    Objective To review the biomechanical research progress of internal fixation of tibial plateau fracture in recent years and provide a reference for the selection of internal fixation in clinic. Methods The literature related to the biomechanical research of internal fixation of tibial plateau fracture at home and abroad was extensively reviewed, and the biomechanical characteristics of the internal fixation mode and position as well as the biomechanical characteristics of different internal fixators, such as screws, plates, and intramedullary nails were summarized and analyzed. Results Tibial plateau fracture is one of the common types of knee fractures. The conventional surgical treatment for tibial plateau fracture is open or closed reduction and internal fixation, which requires anatomical reduction and strong fixation. Anatomical reduction can restore the normal shape of the knee joint; strong fixation provides good biomechanical stability, so that the patient can have early functional exercise, restore knee mobility as early as possible, and avoid knee stiffness. Different internal fixators have their own biomechanical strengths and characteristics. The screw fixation has the advantage of being minimally invasive, but the fixation strength is limited, and it is mostly applied to Schatzker typeⅠfracture. For Schatzker Ⅰ-Ⅳ fracture, unilateral plate fixation can be used; for Schatzker Ⅴand Ⅵ fracture, bilateral plates fixation can be used to provide stronger fixation strength and avoid the stress concentration. The intramedullary nails fixation has the advantages of less trauma and less influence on the blood flow of the fracture end, but the fixation strength of the medial and lateral plateau is limited; so it is more suitable for tibial plateau fracture that involves only the metaphysis. Choosing the most appropriate internal fixation according to the patient’s condition is still a major difficulty in the surgical treatment of tibial plateau fractures. Conclusion Each internal fixator has good fixation effect on tibial plateau fracture within the applicable range, and it is an important research direction to improve and innovate the existing internal fixator from various aspects, such as manufacturing process, material, and morphology.

    Release date:2024-01-12 10:19 Export PDF Favorites Scan
  • Biomechanical study of different approach for lumbar interbody fusion surgeries under vibration load

    The human spine injury and various lumbar spine diseases caused by vibration have attracted extensive attention at home and abroad. To explore the biomechanical characteristics of different approaches for lumbar interbody fusion surgery combined with an interspinous internal fixator, device for intervertebral assisted motion (DIAM), finite element models of anterior lumbar interbody fusion (ALIF), transforaminal lumbar interbody fusion (TLIF) and lateral lumbar interbody fusion (LLIF) are created by simulating clinical operation based on a three-dimensional finite element model of normal human whole lumbar spine. The fusion level is at L4–L5, and the DIAM is implanted between spinous process of L4 and L5. Transient dynamic analysis is conducted on the ALIF, TLIF and LLIF models, respectively, to compute and compare their stress responses to an axial cyclic load. The results show that compared with those in ALIF and TILF models, contact forces between endplate and cage are higher in LLIF model, where the von-Mises stress in endplate and DIAM is lower. This implies that the LLIF have a better biomechanical performance under vibration. After bony fusion between vertebrae, the endplate and DIAM stresses for all the three surgical models are decreased. It is expected that this study can provide references for selection of surgical approaches in the fusion surgery and vibration protection for the postsurgical lumbar spine.

    Release date:2021-12-24 04:01 Export PDF Favorites Scan
  • Anatomical and biomechanical characteristics of plantaris tendon and its application in ligament reconstruction

    Objective To improve the clinical utility of the plantaris tendon mainly by summarizing its anatomical characteristics, biomechanical properties, harvesting methods, and its applications in ligament reconstruction. Methods The relevant literature from domestic and international databases regarding the anatomical and biomechanical characteristics of the plantaris tendon and its applications in ligament reconstruction was comprehensively reviewed and systematically summarized. Results The plantaris tendons have an absence. The majority of plantaris tendon forms a fan-shape on the anterior and medial sides of the Achilles tendon and terminates at the calcaneal tuberosity. There are significant differences in biomechanical parameters between plantaris tendon with different numbers of strands, and multi strand plantaris tendon have significant advantages over single strand tendon. The plantaris tendon can be harvested through proximal and distal approaches, and it is necessary to ensure that there are no obvious anatomical variations or adhesions in the surrounding area before harvesting. The plantaris tendon is commonly utilized in ligament reconstruction around the ankle joint or suture reinforcement for Achilles tendon rupture, with satisfactory effectiveness. There is limited research on the use of plantar tendon in the reconstruction of upper limb and knee joint ligaments. Conclusion The plantaris tendon is relatively superficial, easy to be harvested, and has less impact on local function. The plantaris tendon is commonly utilized in ligaments reconstruction around the ankle joint or suture reinforcement for Achilles tendon rupture. The study on the plantaris tendon for upper limbs and knee joints ligament reconstruction is rarely and require further research.

    Release date:2024-02-20 04:11 Export PDF Favorites Scan
  • Development of on-line lateral stiffness measurement system for anterior cruciate ligament and its influence on anterior cruciate ligament reconstruction

    The anterior cruciate ligament (ACL) reconstruction mostly relies on the experience of surgeons. To improve the effectiveness and adaptability of the tension after ACL reconstruction in knee joint rehabilitation, this paper establishes a lateral force measurement model with relaxation characteristics and designs an on-line stiffness measurement system of ACL. In this paper, we selected 20 sheep knee joints as experimental material for the knee joint stability test before the ACL reconstruction operation, which were divided into two groups for a comparative test of single-bundle ACL reconstruction through the anterolateral approach. The first group of surgeons carried out intraoperative detection with routine procedures. The second group used ACL on-line stiffness measurement system for intraoperative detection. After that, the above two groups were tested for postoperative stability. The study results show that the tension accuracy is (− 2.3 ± 0.04)%, and the displacement error is (1.5 ± 1.8)%. The forward stability, internal rotation stability, and external rotation stability of the two groups were better than those before operation (P < 0.05). But the data of the group using the system were closer to the preoperative knee joint measurement index, and there was no significant difference between them (P > 0.05). The system established in this paper is expected to help clinicians judge the ACL reconstruction tension in the operation process and effectively improve the surgical effect.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
  • Biomechanical evaluation of the first carpometacarpal joint stability by using different reconstruction methods

    Objective To study the biomechanical differences of the first carpometacarpal joint stability by using different reconstruction methods so as to provide theoretical basis for the clinical choice of reconstruction method. Methods The upper limb specimens were selected from 12 fresh adult cadavers, which had no fracture, bone disease, dislocation of wrist joint, deformity, degeneration, or ligament injury on the anteroposterior and lateral X-ray films. The specimens were randomly divided into 5 groups: normal group, injury group, palmar carpometacarpal ligaments reconstruction group, dorsal carpometacarpal ligaments reconstruction group, and palmar and dorsal carpometacarpal ligaments reconstruction group. Three normal specimens were used as normal group, and then were made of the first carpometacarpal joint dislocation models (injury group); after the first carpometacarpal joint dislocation was established in the other 9 specimens; the volar ligament, dorsal ligament, and volar-dorsal ligaments were reconstructed with Eaton-Little method, Yin Weitian method, and the above two methods in 3 construction groups. The biomechanical test was done to obtain the load-displacement curve and to calculate the elastic modulus. Results During biomechanical test, ligament rupture and loosening of Kirschner wire occurred in 1 case of injury group and palmar carpometacarpal ligaments reconstruction group; no slipping was observed. The elastic modulus values were (11.61±0.20), (5.39±0.12), (6.33±0.10), (7.12±0.08), and (8.30±0.10) MPa in normal group, injury group, palmar carpometacarpal ligaments reconstruction group, dorsal carpometacarpal ligaments reconstruction group, and palmar and dorsal carpometacarpal ligaments reconstruction group respectively, showing significant differences among groups (P<0.05). Conclusion Volar ligament reconstruction, dorsal ligament reconstruction, and volar-dorsal ligament reconstruction all can greatly improve the stability of the first carpometacarpal joint. And the effect of volar-dorsal ligament reconstruction is the best, but the stability can not restore to normal.

    Release date:2017-03-13 01:37 Export PDF Favorites Scan
  • Biomechanics test of fixation of star-shaped six-part patellar fractures with petal-shaped poly-axial locking plate

    ObjectiveTo compare the biomechanical difference between petal-shaped poly-axial locking plate and tension band wire cerclage in fixing star-shaped 6-part patellar fractures in cadaver model, and provide the experimental data for clinical use.MethodsThe paired 12 knee specimens from 6 human cadavers were randomly divided into 2 groups (the control group and the test group) after a star-shaped 6-part patellar fracture model was established. The specimens were weighted, and the control group was fixed with tension band wire cerclage and the test group was fixed with petal-shaped poly-axial locking plate. The specimens were connected to CMT5105 biomechanics test machine by a customized fixture, the total fracture gap of patellar fracture blocks was measured before testing. The knee extensor load test was performed to record the extensor load of knees at 90° flexion to extension. Then the anti gravity physiological knee extension process at 90° flexion was stimulated according to the knee extensor load. The cyclic times until failure and the total fracture gap of patellar fracture blocks after failure were recorded.ResultsThe specimens weight and the total fracture gap of patellar fracture blocks before testing between 2 groups had no significant difference (t=0.410, P=0.690; t=0.650, P=0.530). In the biomechanical test, there was no significant difference of knee extension load between 2 groups (t=0.490, P=0.638). The total fracture gap after failure in test group was significantly smaller than that in control group (t=3.026, P=0.013), and the cyclic times until failure in test group was significantly more than that in control group (t=2.277, P=0.046). The failure reasons in control group were all the wires slipped off the Kirschner wires, while the failure reasons in test group were the screws pulled out from the upper pole in 5 cases (83.3%) and from the lower pole in 1 case (16.7%).ConclusionThe petal-shaped poly-axial locking plate has better biomechanical stiffness to fix the star-shaped 6-part patellar fractures when compared with tension band wire cerclage method. However, this type of fracture is a serious comminuted type, and the early excessive activity still carries the risk of displacement.

    Release date:2018-03-07 04:35 Export PDF Favorites Scan
  • Research progress on pathological changes of glenohumeral capsule in patients with recurrent shoulder anterior dislocation

    Objective To review the research progress of pathological changes of glenohumeral capsule in patients with recurrent shoulder anterior dislocation (RSAD). Methods The literature on shoulder capsules, both domestic and international, was reviewed. The anatomy, histology, and molecular biology characteristics of the glenohumeral capsule in RSAD patients were summarized. Results Anatomically, the glenohumeral capsule is composed of four distinct parts: the upper, lower, anterior, and posterior sections. The thickness of these sections is uneven, and the stability of the capsule is further enhanced by the presence of the glenohumeral and coracohumeral ligaments. Histologically, the capsule tissue undergoes adaptive changes following RSAD, which improve its ability to withstand stretching and deformation. In the realm of molecular biology, genes associated with the regulation of structure formation, function, and extracellular matrix homeostasis of the shoulder capsule’s collagen fibers exhibit varying degrees of expression changes. Specifically, the up-regulation of transforming growth factor β1 (TGF-β1), TGF-β receptor 1, lysyl oxidase, and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 facilitates the repair of the joint capsule, thereby contributing to the maintenance of shoulder joint stability. Conversely, the up-regulation of collagen type Ⅰ alpha 1 (COL1A1), COL3A1, and COL5A1 is linked to the recurrence of shoulder anterior dislocation, as these changes reflect the joint capsule’s response to dislocation. Additionally, the expressions of tenascin C and fibronectin 1 may play a role in the pathological processes occurring during the early stages of RSAD. ConclusionGlenohumeral capsular laxity is both a consequence of RSAD and a significant factor contributing to its recurrence. While numerous studies have documented alterations in the shoulder capsule following RSAD, further research is necessary to confirm the specific pathological anatomy, histological, and molecular biological changes involved.

    Release date:2025-02-17 08:55 Export PDF Favorites Scan
  • Biomechanical Research of Transforaminal Lumbar Interbody Fusion Model

    Based on the surgical model using transforaminal lumbar interbody fusion (TLIF) to treat lumbar spondylolisthesis, this paper presents the investigations of the biomechanical characteristics of cage and pedicle screw in lumbar spinal fusion implant fixed system under different combinations with finite element method. Firstly, combining the CT images with finite element pretreatment software, we established three dimensional nonlinear finite element model of human lumbar L4-L5 segmental slight slippage and implant under different fixed combinations. We then made a comparison analysis between the biomechanical characteristics of lumbar motion range, stress distribution of cage and pedicle screw under six status of each model which were flexion, extension, left lateral bending, right lateral bending, left axial rotation and right axial rotation. The results showed that the motion ranges of this model under different operations were reduced above 84% compared with those of the intact model, and the stability of the former was improved significantly. The stress values of cage and pedicle screw were relatively larger when they were fixed by single fusion device additional unilateral pedicle screw, but there was no statistically significant difference. The above research results would provide reference and confirmation for further biomechanics research of TLIF extracorporal specimens, and finally provide biomechanical basis for the feasibility of unilateral internal fixed diagonal intervertebral fusion TLIF surgery.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
10 pages Previous 1 2 3 ... 10 Next

Format

Content