west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "biofilm" 16 results
  • Research progress of new treatment options for clinical bacterial biofilm infection

    Bacterial biofilms are associated with at least 80% of human bacterial infections. The clinical treatment of biofilm infection is still arduous, and therefore many new treatment options are under study, such as probiotics and their derivatives, quorum sensing inhibitors, antimicrobial peptides, phage therapy, organic acids, light therapy, and plant extracts. However, most of these schemes are not mature, and it is important to develop new research directions of anti-biofilms.

    Release date: Export PDF Favorites Scan
  • EFFECT OF BROMINATED FURANONES ON BIOFILM FORMATION OF ESCHERICHIA COLI ON POLYVINYL CHLORIDE MATERIAL

    Objective To study the influence of brominated furanones on the biofilm formation of Escherichia coli on the polyvinyl chloride (PVC) material, and to provide new ideas for the research of surface modification of materials and cl inicaltreatment of biomaterial centered infection. Methods Three brominated furanones with representative chemical structurewere chosen and coated on the surface modification of PVC materials, respectively [furanone 1: 3, 4-dibromo-5-hydroxy-furanone; furanone 2: 4-bromo-5-(4-methoxyphenyl)-3-(methylamino)-furanone; furanone 3: 3, 4-dibromo-5, 5-bis (4-methylphenyl)- 2 (5H)-furanone]. All the modificated PVC materials and Escherichia coli were co-cultivated. The PVC material soaked with 75% ethanol for 5 minutes and Escherichia coli were co-cultivated together as the control group. The thickness of bacterial community and bacterial community quantity in the unit area on PVC materials were measured by confocal laser scanning microscope (CLSM), and the surface structure of biofilm formation was observed by scanning electron microscope (SEM). Results The CLSM showed that the thickness of bacterial community and the bacterial community quantity in the unit area of PVC materials was significantly less (P lt; 0.05) in furanone 3 group than in control group, but no significant difference (P gt; 0.05) was found between furanone 1, furanone 2 groups and control group. SEM showed that the quantity of bacterial community in the unit area of PVC materials surface in furanone 3 group was fewer than that in control group at 6 hours; the biofilm structure on PVC materials surface formed at 18 hours in control group, furanone 1 group, and furanone 2 group, but there was no mature biofilm structure on PVC materials surface in furanone 3 group at 18 hours. Conclusion The impact of different brominated furanones on Escherichia coli biofilm formation on the surface of PVC materials is different, 3, 4-dibromo-5, 5-bis (4-methylphenyl)-2 (5H)- furanone can inhibit Escherichia coli biofilm formation on the surface of PVC material.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • The inhibition of accessory gene regulator C specific binding peptides on biofilm formation of Staphylococcus epidermidis on the surface of polyvinyl chloride in vitro

    ObjectiveTo investigate the effect of accessory gene regulator C (agr C) specific binding peptides (named N1) on the biofilm formation of Staphylococcus epidermidis on the surface of polyvinyl chloride (PVC) materials in vitro.MethodsFirstly, the two strains (ATCC35984, ATCC12228) were cultured with N1 at concentrations of 100, 200, 400, 800, and 1 600 μg/mL, respectively. The control group was cultured with agrC specific binding unrelated peptides (named N0) at the same concentrations and the absorbance (A) value was measured after 24 hours to determine the optimal bacteriostatic concentration of N1. The two strains were cultured with N1 and N0 of the optimal concentration, respectively. The A values were measured at 6, 12, 18, 24, 30, and 48 hours to observe the effect of N1 on the biofilm formation ability of Staphylococcus epidermidis. On this basis, the surface structure of the biofilm on the surface of PVC material was observed by scanning electron microscopy after 6, 12, 18, 24, and 30 hours of incubation with PVC material sheet. The thickness of the biofilm was observed by laser confocal microscopy after 6, 12, 18, and 24 hours of incubation with ATCC35984 strain.ResultsThe optimal bacteriostatic concentration of N1 was 800 μg/mL. ATCC 12228 strain did not form obvious biofilm after being cultured with N1 and N0. When ATCC35984 strain was cultured with N1 and N0 for 12 hours, the difference in biofilm formation ability between groups N1 and N0 was statistically significant (P<0.05), but there was no significant difference at 6, 18, 24, 30, and 48 hours (P>0.05). Scanning electron microscopy examination showed that mature biofilm structure was observed in ATCC35984 strain and was not observed in ATCC12228 strain. Laser confocal microscopy observation showed that the number of bacteria in the group N1 was significantly lower than that in the group N0 at 12 hours, and the most of bacteria were dead bacteria. There was no significant difference in the number of bacteria at 6, 18, and 24 hours, and the most of them were live bacteria. The biofilm thickness of group N1 was significantly lower than that of group N0 at 12 and 18 hours (P<0.05).ConclusionThe intensity of N1 inhibiting the formation of Staphylococcus epidermidis biofilm is dose-dependent. During the aggregation period, N1 can inhibit the biofilm formation by hindering the bacterial growth and aggregation. The inhibition effect on mature biofilm is not obvious.

    Release date:2019-03-11 10:22 Export PDF Favorites Scan
  • EFFECT OF IATROGENIC STAPHYLOCOCCUS EPIDERMIDIS INTERCELLAR ADHESION OPERON ON FORMATION OF BACTERIAL BIOFILM ON SURFACE OF POLYVINYL CHLORIDE

    Objective The intercellular adhesion (ica) gene of Staphylococcus epidermidis (SE) is a key factor to bacterial aggregation, to analysis the genotype of iatrogenic SE and to explore the effect of iatrogenic SE ica operon on theformation of bacterial biofilm on the surface of polyvinyl chloride (PVC). Methods Fifty-six cl inical isolates of iatrogenic SEwere selected, and PCR and gene sequencing were used to detect the genes related with bacterial biofilm formation. The genes contained 16S rRNA, autolysin (atlE), fibrinogen binding protein (fbe), and icaADB. The bacteria suspension of 1 × 105 cfu/mL iatrogenic SE was prepared; according to the test results of target genes, the PVC material and the genotype of icaADB+, atlE+, fbe+ strains were co-cultivated as the ica positive group; the PVC material and the genotype of icaADB-, atlE+, fbe+ strains were co-cultivated as the ica negative group. The thickness of biofilm and bacterial community quantity unit area on PVC materials were measured by confocal laser scanning microscope, and the surface structure of biofilm formation was observed by scanning electron microscope (SEM) at 6, 12, 18, 24, and 30 hours. Results The positive rate of 16S rRNA of iatrogenic SE strains was 100% (56/56). The genotype of icaADB+, atlE+, and fbe+ strains accounted for 57.1% (32/56). The genotype of icaADB-, atlE+, and fbe+ strains accounted for 37.5% (21/56). The sequencing results showed that the product sequences of 16S rRNA, atlE, fbe, and icaADB were consistent with those in GenBank. With time, no significant bacterial biofilm formed on the surface of PVC in ica operon negative group. But in ica operon positive group, the number of bacterial community was gradually increased, and the volume of bacterial biofilms was gradually increased on the surface of PVC. At 24 hours, mature bacterial biofilm structure formed, and at 30 hours, the volume of bacterial biofilms was tending towards stabil ity. The thickness of biofilm (F=6 714.395, P=0.000) and the bacterial community quantity unit area on PVC materials (F=435.985, P=0.000) in ica operon positive groupwere significantly higher than those in ica operon negative group. Conclusion Iatrogenic SE can be divided into 2 types ofica operon negative and ica operon positive bacteria. The iatrogenic SE ica operon can strengthen bacterium biofilm formation capabil ity on PVC materials, bacterium community quantity, and thickness of biofilm, it plays an important role in bacterium biofilm formation on PVC materials.

    Release date:2016-08-31 05:43 Export PDF Favorites Scan
  • BIOFILM AND ROLE OF icaA, icaD, AND ACCUMULATION-ASSOCIATED PROTEIN IN STAPHYLOCOCCUS EPIDERMIDIS ISOLATED IN BREAST SURGERY

    ObjectiveTo investigate biofilm formation on the surface of silica gel by breast surgery clinical specimens of Staphylococcus epidermidis and to analyze the relationship between biofilm formation and icaA, icaD, and accumulation-associated protein (aap) gene. MethodsBetween December 2011 and January 2013, 44 strains of Staphylococcus epidermidis were isolated from the clinical specimens of the female patients who had no symptom of infection. The icaA, icaD, and aap genes were detected by PCR and 4 genotypic groups were divided:icaA+icaD+/aap+ group (group A), icaA+icaD+/aap- group (group B), icaA-icaD-/aap+ group (group C), and icaA-icaD-/aap- group (group D). Biofilms mass was semi-quantified by semi-quantitative adherence assay after 8, 12, 24, 30, and 36 hours of incubation. The thickness of biofilms was measured by confocal laser scanning microscope (CLSM) at 12 and 24 hours after incubation. The ultrastructure of biofilms was observed by scanning electron microscope (SEM) at 24 hours after incubation. ResultsPCR test showed that 13 strains were icaA+icaD+/aap+(group A), 12 strains were icaA+icaD+/aap-(group B), 16 strains were icaA-icaD-/aap+(group C), and 3 strains were icaA-icaD-/aap-(group D). In 29 strains which had bacterial biofilm formation (65.9%), there were 13 strains in group A, 7 strains in group B, 9 strains in group C, and 0 in group D. The result of semi-quantitative adherence assay showed no significant difference in the absorbance (A) values among 4 groups at 8 hours (P>0.05). The A values of groups A, B, and C were significantly higher than that of group D at 12-36 hours, and group A was significantly higher than groups B and C (P<0.05), but there was no significant difference between groups B and C (P>0.05). The results of CLSM showed that the thickness of biofilm in groups A, B, and C was significantly larger than that in group D at 12 and 24 hours after incubation (P<0.05), and the thickness of biofilm in group A was significantly larger than that in groups B and C (P<0.05), but there was no significant difference between groups B and C (P>0.05). The result of SEM showed that the mature biofilm could be observed on the surface of silica gel in groups A, B, and C, and the ultrastructure of biofilms in group A were the most abundant and extensive among 3 groups. The ultrastructure of biofilm in group B was similar to that in group C. No obvious biofilms formed in group D. ConclusionicaA, icaD, and aap genes all play key roles in the process for biofilm formation of Staphylococcus epidermidis. Futhermore, aap gene enhance the ability of biofilm-forming when aap and ica genes coexist, so the biofilm-forming ability of icaA+icaD+/aap+ is strongest.

    Release date: Export PDF Favorites Scan
  • BACTERIAL BIOFILMS AND CHRONIC OSTEOMYELITIS

    Objective To overview the effect of bacterial biofilms (BBF) on the formation of chronic osteomyel itis and the treatment measure. Methods The original articles in recent years about the relationship between BBF and chronic osteomyel itis were reviewed. Results The diagnosis and treatment of chronic osteomyel itis was very difficult, besides hyperplasia oflocal scar, poor blood supply, drug-resistant, forming of BBF also was an important reason. BBF formed on the surface of necrosis soft tissue and dead bone. Due to the protection of BBF, the bacterium were far more resistant to antimicrobial agents, which caused the recurrence of chronic osteomyel itis. The forming of BBF included three processes which were adhesion, development and maturity. As the major pathogens of chronic osteomyel itis, staphylococcus had its own characteristic. Designing therapeutic programmes according to these characteristics had become the trend of anti-infection treatment of BBF. Conclusion Although there are lots of studies on anti-biofilm due to the key factors during the forming of BBF, the most effective way of anti-biofilm is still debridement.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • The Effect of Brominated Furanones on the Biofilm Formation of Staphylococcus Epidermidis on the Polyvinyl Chloride Material

    Objective To study the influence of brominated furanones on the biofilm (BF) formation of Staphylococcus epidermidis (SE) on polyvinyl chloride(PVC) materials, and provide new ideas for the research of surface modification of materials and clinical treatment of biomaterial centered infection. Methods We chose three kinds of brominated furanone with representative chemical structure for our research which were respectively 3,4dibromo-5-hydroxy2 (5H) -furanone (Mucobromic acid) in the first furanone group, 4-bromo-5(4-methoxyphenyl)3(methylamino)2(5H)furanone in the second furanone group, and 3,4dibromo-5,5-bis(4-methylphenyl)2(5H)-furanone in the third furanone group. The PVC material soaked with 75% ethanol for 5minutes was classified as the control group. The surface coating of the PVC materials in the four groups all underwent modification respectively and then they were cocultivated with staphylococcus epidermidis together. Confocal laser scanning microscope(CLSM) was adopted to detect the thickness of bacterium BF and bacterium community quantity unit area on PVC materials and scanning electron microscope(SEM) was used to observe surface structure of SE, BF formation at 6 h, 12 h, 18 h and 24 h respectively. Results The results of CLSM showed that, compared with the control group, SE bacterium community quantity unit area and the thickness of bacterium BF on the PVC material surface in the second furanone group were obviously smaller (Plt;0.05). SE bacterium community quantity unit area and thickness of bacterium BF on PVC material surface in the first and the third furanone groups had no significant difference (Pgt;0.05). The result of SEM showed that, the quantity of SE bacterium community unit area on PVC material surface in the second furanone group were smaller than that of the control group at 6 hours. The biofilm structure on PVC material surface in the control group was formed at 18 hours, but there were no mature biofilm structure on PVC material surface in the second furanone group at 18 hours. Conclusion The impact of different brominated furanone on SE biofilm formation on the surface of PVC materials is different. The second kind of furanone can inhibit the quantity of SE bacterium community unit area and SE biofilm formation on the surface of PVC materials.

    Release date:2016-08-30 06:02 Export PDF Favorites Scan
  • Role of antibiotic delivery system targeting bacterial biofilm based on ε-poly-L-lysine and cyclodextrin in treatment of bone and joint infections

    Objective To explore the mechanism of antibiotic delivery system targeting bacterial biofilm with linezolid (LZD) based on ε-poly-L-lysine (ε-PLL) and cyclodextrin (CD) (ε-PLL-CD-LZD), aiming to enhance antibiotic bioavailability, effectively penetrate and disrupt biofilm structures, and thereby improve the treatment of bone and joint infections. Methods ε-PLL-CD-LZD was synthesized via chemical methods. The grafting rate of CD was characterized using nuclear magnetic resonance. In vitro biocompatibility was evaluated through live/dead cell staining after co-culturing with mouse embryonic osteoblast precursor cells (MC3T3-E1), human umbilical vein endothelial cells, and mouse embryonic fibroblast cells (3T3-L1). The biofilm-enrichment capacity of ε-PLL-CD-LZD was assessed using Staphylococcus aureus biofilms through enrichment studies. Its biofilm eradication efficacy was investigated via minimum inhibitory concentration (MIC) determination, scanning electron microscopy, and live/dead bacterial staining. A bone and joint infection model in male Sprague-Dawley rats was established to validate the antibacterial effects of ε-PLL-CD-LZD. Results In ε-PLL-CD-LZD, the average grafting rate of CD reached 9.88%. The cell viability exceeded 90% after co-culturing with three types cells. The strong biofilm enrichment capability was observed with a MIC of 2 mg/L. Scanning electron microscopy observations revealed the effective disruption of biofilm structure, indicating potent biofilm eradication capacity. In vivo rat experiments demonstrated that ε-PLL-CD-LZD significantly reduced bacterial load and infection positivity rate at the lesion site (P<0.05). ConclusionThe ε-PLL-CD antibiotic delivery system provides a treatment strategy for bone and joint infections with high clinical translational significance. By effectively enhancing antibiotic bioavailability, penetrating, and disrupting biofilms, it demonstrated significant anti-infection effects in animal models.

    Release date:2025-03-14 09:43 Export PDF Favorites Scan
  • Effect of silver nanoparticles on Staphylococcus aureus biofilm formation on different orthopedic biomaterials

    Objective To observe the inhibitory characteristics of silver nanoparticles (AgNP) on bacterial biofilms and investigate their inhibitory effect on biofilm formation on three common orthopedic biomaterials. Methods The minimal inhibitory concentration (MIC) and minimal biofilm inhibitory concentration (MBIC) of AgNP were determined by microplate dilution assay. Biofilms of Staphylococcus aureus (ATCC 25923) were cultured on three orthopedic biomaterials (titanium alloy, titanium oxide, and stainless steel) and intervened with AgNP at concentrations of 32, 16, 8, 4, 2 and 0 μg/mL to determine the MBICs on the three materials. The effects of AgNP on biofilm formation were analyzed by scanning electron microscopy and measuring optical density. Results The MIC and MBIC of AgNP in the microplate assay were both 16 µg/mL. The MBICs of AgNP on biofilm formation in titanium oxide, titanium alloy, and stainless steel were 16 μg/mL, 32 μg/mL, and 32 μg/mL, respectively. Among the three materials, the lowest optical density was observed on titanium oxide, while the highest was on titanium alloy. Conclusions AgNP has strong antibacterial biofilm characteristics and can prevent the formation of Staphylococcus aureus biofilm in vitro. Biofilm formation is most pronounced on titanium alloy, least on titanium oxide, and intermediate on stainless steel.

    Release date:2023-08-24 10:24 Export PDF Favorites Scan
  • In vivo study on the effects of intercellular adhesion operon of Staphylococcus epidermidis on the inflammation associated with bacteria-fungal mixed biofilm

    ObjectiveTo study the effect of intercellular adhesion (ica) operon of Staphylococcus epidermidis on the inflammation associated with mixed biofilm of Staphylococcus epidermidis and Candida albicans on endotracheal tube material in rabbits. MethodsThe standard strains of Staphylococcus epidermidis RP62A (ica operon positive, positive group) and ATCC12228 (ica operon negative, negative group) were taken to prepare a bacterial solution with a concentration of 1×106 CFU/mL, respectively. Then, the two bacterial solutions were mixed with the standard strain of Candida albicans ATCC10231 of the same concentration to prepare a mixed culture solution at a ratio of 1∶1, respectively. The mixed culture solution was incubated with endotracheal tube material for 24 hours. The formation of mixed biofilm on the surface of the material was observed by scanning electron microscope. Thirty New Zealand rabbits, aged 4-6 months, were divided into two groups (n=15), and the endotracheal tube materials of the positive group and the negative group that were incubated for 24 hours were implanted beside the trachea. The body mass of rabbits in the two groups was measured before operation and at 1, 3, and 7 days after operation. At 1, 3, and 7 days after operation, the levels of interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), and monocytechemotactic protein 1 (MCP-1) were detected by using an ELISA test kit. At 7 days after operation, the formation of mixed biofilm on the surface of the endotracheal tube materials was observed by scanning electron microscope, the inflammation and infiltration of tissues around the materials were observed by HE staining, and the bacterial infections in heart, lung, liver, and kidney were observed by plate colony counting method.ResultsScanning electron microscope observation showed that the mixed biofilm structure was obvious in the positive group after 24 hours in vitro incubation, but no mixed biofilm formation was observed in the negative group. In vivo studies showed that there was no significant difference in body mass between the two groups before operation and at 1, 3, and 7 days after operation (P>0.05). Compared with the negative group, the levels of MCP-1 and IL-1β at 1 day, and the levels of IL-1β, MCP-1, IL-6, and TNF-α at 3 and 7 days in the positive group all increased, with significant differences (P<0.05). Scanning electron microscope observation showed that a large amount of Staphylococcus epidermis and mixed biofilm structure were observed in the positive group, and a very small amount of bacteria was observed in the negative group with no mixed biofilm structure. HE staining of surrounding tissue showed inflammatory cell infiltration in both groups, and neutrophils and lymphocytes were more in the positive group than in the negative group. There was no significant difference in the number of bacterial infections in heart and liver between the two groups (P>0.05). The number of bacterial infections in lung and kidney in the positive group was higher than that in negative group (P<0.05).ConclusionIn the mixed infection of Staphylococcus epidermidis and Candida albicans, the ica operon may strengthen the structure of the biofilm and the spread of the biofilm in vivo, leading to increased inflammatory factors, and the bacteria are difficult to remove and persist.

    Release date:2021-10-28 04:29 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content