ObjectiveTo investigate the role of p22phox and NOX5 in autophagy and apoptosis of osteoblasts induced by hypoxia.MethodsThe skull tissue of newborn rats was cut into small pieces, and the osteoblasts were separated and purified by the tissue block adherent method and the differential adherent method. The first generation cells were harvested and identified by HE staining, Alizarin red staining, alkaline phosphatase (ALP) staining, and flow cytometry. A three-gas incubator was used to prepare a hypoxia model of osteoblasts. At 0, 3, 6, 12, and 24 hours of hypoxia, the expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ were detected by Western blot, and the level of reactive oxygen species (ROS) and cell apoptosis rate were detected by flow cytometry. And the time point of the highest level of ROS was selected as the hypoxia time point for subsequent experiments. The first generation osteoblasts were divided into normal group, si-p22phox hypoxia group, and si-NOX5 hypoxia group and subjected to corresponding transfection and hypoxia treatment. The inhibition efficiency of si-p22phox and si-NOX5 were detected by RT-PCR. Then the osteoblasts were divided into normal group, si-NC hypoxia group, si-p22phox hypoxia group, and si-NOX5 hypoxia group. After transfection and hypoxia treatment, Western blot was used to detect the expressions of p22phox, NOX5, autophagy-related proteins (LC3Ⅱ/Ⅰ, Beclin), and apoptosis-related proteins (Bcl-2, Bax), and flow cytometry was used to detect the cell apoptosis rate and level of ROS. The first generation osteoblasts were divided into a hypoxia group for 12 hours (hypoxia group) and a group that simultaneously inhibited si-p22phox and si-NOX5 and hypoxia for 12 hours (inhibition+hypoxia group). The expressions of Beclin and Bax were observed by immunofluorescence staining after the corresponding treatment.ResultsAfter identification, the isolated cells were osteoblasts. After hypoxia treatment, the relative expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ proteins and the apoptosis rate of osteoblasts gradually increased (P<0.05), and the level of ROS also significantly increased (P<0.05) and reached the peak value at 12 hours. The 12-hour hypoxia model was selected for subsequent experiments. Silencing the p22phox gene did not affect the expression of NOX5, and silencing the NOX5 gene did not affect the expression of p22phox. Compared with hypoxia treatment, the relative expressions of LC3Ⅱ/Ⅰ, Beclin, and Bax proteins after inhibiting the expression of p22phox or NOX5 gene significantly decreased (P<0.05), the relative expression of Bcl-2 protein significantly increased (P<0.05), the cell apoptosis rate and level of ROS also significantly decreased (P<0.05). After silencing the expressions of p22phox and NOX5 genes at the same time, the immunofluorescence staining showed that the fluorescence of Beclin and Bax were weak.ConclusionInhibiting the expressions of p22phox and NOX5 genes can reduce the level of ROS in osteoblasts under hypoxia-induced conditions, and at the same time reduce autophagy and apoptosis, especially attenuate the excessive apoptosis of cells in the early to late stages, and strengthen the hypoxic osteoblasts proliferation.
Objective To analyze the hotspots and development trends in the research field of tumor cell apoptosis and autophagy. Methods Relevant literature on tumor apoptosis and autophagy published between January 2012 and December 2021 were searched through the Web of Science core collection database, and CiteSpace 5.8.R3 software and VOSviewer version 1.6.10 software were used to analyze the country/region, institution, keywords and citation node information of the literature. Results A total of 6716 foreign-language articles were included in the study after searching and screening, and the number of papers showed a linear upward trend year by year. China published the largest number of articles and cooperated closely with other research institutions, but there were not many high-quality and influential articles. The two journals Autophagy and Cell were more authoritative in the field of tumor apoptosis and autophagy research. The signaling pathways and related proteins of apoptosis and autophagy, and the study of tumor suppressor mechanisms based on apoptosis/autophagy were current research hot topics. The migration, apoptosis and epithelial mesenchymal transformation of cancer cells would be the research focus and direction in the future. Conclusions In the past 10 years, the research on tumor apoptosis and autophagy has continued to develop. With the in-depth research on the molecular level, the study of its mechanism is expected to further reveal the mystery of tumor apoptosis and autophagy.
ObjectiveTo summarize the role of chondrocyte mitochondrial homeostasis imbalance in the pathogenesis of osteoarthritis (OA) and analyze its application prospects. Methods The recent literature at home and abroad was reviewed to summarize the mechanism of mitochondrial homeostasis imbalance, the relationship between mitochondrial homeostasis imbalance and the pathogenesis of OA, and the application prospect in the treatment of OA. Results Recent studies have shown that mitochondrial homeostasis imbalance, which is caused by abnormal mitochondrial biogenesis, the imbalance of mitochondrial redox, the imbalance of mitochondrial dynamics, and damaged mitochondrial autophagy of chondrocytes, plays an important role in the pathogenesis of OA. Abnormal mitochondrial biogenesis can accelerate the catabolic reaction of OA chondrocytes and aggravate cartilage damage. The imbalance of mitochondrial redox can lead to the accumulation of reactive oxygen species (ROS), inhibit the synthesis of extracellular matrix, induce ferroptosis and eventually leads to cartilage degradation. The imbalance of mitochondrial dynamics can lead to mitochondrial DNA mutation, decreased adenosine triphosphate production, ROS accumulation, and accelerated apoptosis of chondrocytes. When mitochondrial autophagy is damaged, dysfunctional mitochondria cannot be cleared in time, leading to ROS accumulation, which leads to chondrocyte apoptosis. It has been found that substances such as puerarin, safflower yellow, and astaxanthin can inhibit the development of OA by regulating mitochondrial homeostasis, which proves the potential to be used in the treatment of OA. Conclusion The mitochondrial homeostasis imbalance in chondrocytes is one of the most important pathogeneses of OA, and further exploration of the mechanisms of mitochondrial homeostasis imbalance is of great significance for the prevention and treatment of OA.
ObjectiveTo summarize the recent advances in the relationship between long non-coding RNA (LncRNA) and tumor autophagy, autophagy and drug resistance regulation.MethodsReviewed the relevant literatures at home and abroad, and reviewed the recent research progress of LncRNA regulation of autophagy to affect tumor resistance.ResultsDrug resistance was a common problem in the process of anti-tumor therapy. Autophagy played an important role in the process of tumor resistance as an important mechanism to maintain cell homeostasis. Abnormal regulation of LncRNA could contribute to the occurrence and development of tumors, and could also mediate the resistance of tumor cells to anti-tumor drugs by promoting or inhibiting autophagy.ConclusionsLncRNA can mediate tumor autophagy in a positive or negative direction, and autophagy is a " double-edged sword” for tumor resistance. LncRNA may improve tumor resistance to drugs by regulating autophagy.
Immunoglobulin A nephropathy (IgAN) is an immune-mediated chronic inflammatory disease with a complex pathogenesis and diverse clinical manifestations. Currently, there is no specific treatment plan. Programmed cell death is an active and orderly way of cell death controlled by genes in the body, which maintains the homeostasis of the body and the development of organs and tissues by participating in various molecular signaling pathways. In recent years, programmed cell death has played an important regulatory role in the occurrence and development of IgAN, involving complex signaling pathways. Under pathological conditions, it may relieve kidney damage through various pathways such as reducing oxidative stress, inhibiting inflammation, and improving energy metabolism. This article provides a review of the research progress of IgAN in apoptosis, autophagy, pyroptosis, ferroptosis,and cuproptosis in order to provide new therapeutic targets for IgAN.
ObjectiveTo summarize the mechanism of hydrogen sulfide (H2S) in regulating autophagy and ameliorating multi-organ dysfunction in the treatment of sepsis.MethodThe relevant literatures at home and abroad in recent years were systematically searched and read to review the mechanism of H2S in regulating autophagy and ameliorating multi-organ dysfunction during sepsis.ResultsAs a new medical gas signal molecule, H2S could regulate autophagy by regulating multiple signal pathways such as Nrf2, NF-κB, MAPK, AMPK, etc., then ameliorated multi-organ dysfunction in sepsis.ConclusionH2S inhibits inflammation, oxidative stress, and apoptosis by regulating autophagy, thus ameliorating multi-organ dysfunction in sepsis, which is expected to become an effective therapeutic target for sepsis.
Objective To review the mechanism and effects of cell autophagy in the pathophysiology changes of peripheral nerve injury. Methods The recent literature about cell autophagy in peripheral nerve injury and regeneration was extensively reviewed and summarized. Results The researches through drugs intervention and gene knockout techniques have confirmed that the Schwann cell autophagy influences the myelin degeneration, debris clearance, inflammatory cells infiltration, and axon regeneration through JNK/c-Jun pathway. To adjust autophagy process could slow down the Wallerian degeneration, maintain the integrity of injured nerve, while the effect on axon regeneration is still controversial. Conclusion The Schwann cell autophagy plays a key role in the pathophysiology changes of peripheral nerve injury, the further study of its mechanism could provide new methods for the therapy of peripheral nerve injury.
Objective To explore the relationship between Beclin-1 and the development of pancreatic ductal adenocarcinoma (PDAC). Methods ① Twenty-five PDAC specimens and 20 matched adjacent normal pancreatic tissues were obtained after radical surgery between April 2009 and November 2009 in West China Hospital of Sichuan University. Beclin-1 mRNA and protein expressions were examined by using real-time PCR and immunohistochemistry, respectively. Correlations between expressions of Beclin-1 protein with clinical data of PDAC patients were evaluated. ② PDAC cells were divided into 2 groups, cells of transfection group were transfected with PLenO-WPI-Beclin-1 vector, and cells of non-transfection group didn’t transfected with PLenO-WPI-Beclin-1 vector. Expressions levels of Beclin-1 mRNA in the 2 groups were detected by real-time PCR at 24 hours and 48 hours after transfection. ③ PDAC cells were divided into 3 groups, cells of transfection group were transfected with PLenO-WPI-Beclin-1 vector, cells of empty vector group transfected with PLenO-WPI, cells of blank control group didn’t accepted any vector. OD value was detected by MTT once a day during 1–7 days after transfection. Results ① Expression levels of Beclin-1 mRNA and its protein were significantly lower in PDAC tissue than those of adjacent normal pancreatic tissues (P<0.05). Increased Beclin-1 expression was associated with early TNM stage of Ⅰ and Ⅱ(P<0.05) and negative distant metastasis (P=0.011). ② At the same time point of 24 hours and 48 hours after transfection, the expression levels of Beclin-1 mRNA were higher in transfection group than those of non-transfection group (P<0.05). ③ MTT assay showed that PANC-1 cell proliferation ability was lower in the transfection group compared to the blank control group and empty vector groups in vitro on day 4–7 after transfection (P<0.05), but there was no significant in the cell proliferation ability among the 3 groups on day 1, 2, and 3 (P>0.05). Conclusions Down regulation of Beclin-1 and autophagy inhibition play an important role in the tumorigenesis and development of PDAC. Activating autophagy via overexpression of Beclin-1 may be a potential treatment for some PDACs and warrants further investigation.
Hypoxia inducible factor-1 (HIF-1) is the main transcription factor and the core regulator for cells to adapt to hypoxia, and oxygen homeostasis is achieved by controlling and utilizing oxygen delivery. Autophagy and apoptosis play an important role in determining cell fate and maintaining cell homeostasis. In recent years, it has been found that the dynamic change of HIF-1 expression plays a key role in the hypoxic adaptive response of cardiomyocytes. The regulation of HIF-1 on autophagy and apoptosis of hypoxic cardiomyocytes determines the survival of cardiomyocytes, which is of great significance for the prognosis of ischemic heart disease.
Nuclear receptors are transcriptional regulators involved in almost all biological processes such as cell growth, differentiation, apoptosis, substance metabolism and tumor formation, and they can be regulated by small molecules that bind to them. Autophagy is a special way of programmed cell death and it is a highly conserved metabolic process. Once autophagy defects or excessive autophagy occur, the disease will develop. In recent years, numerous studies have shown that nuclear receptors are related to autophagy. Therefore, this paper mainly reviews the research progress on nuclear receptors involved in the regulation of autophagy, and focuses on the mechanism of several nuclear receptors involved in the regulation of autophagy, aiming at understanding the molecular basis of how nuclear receptors participate in regulating autophagy, as well as providing possible ideas and strategies for the treatment of corresponding diseases.