The incidence of tinnitus is very high, which can affect the patient’s attention, emotion and sleep, and even cause serious psychological distress and suicidal tendency. Currently, there is no uniform and objective method for tinnitus detection and therapy, and the mechanism of tinnitus is still unclear. In this study, we first collected the resting state electroencephalogram (EEG) data of tinnitus patients and healthy subjects. Then the power spectrum topology diagrams were compared of in the band of δ (0.5–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–30 Hz) and γ (31–50 Hz) to explore the central mechanism of tinnitus. A total of 16 tinnitus patients and 16 healthy subjects were recruited to participate in the experiment. The results of resting state EEG experiments found that the spectrum power value of tinnitus patients was higher than that of healthy subjects in all concerned frequency bands. The t-test results showed that the significant difference areas were mainly concentrated in the right temporal lobe of the θ and α band, and the temporal lobe, parietal lobe and forehead area of the β and γ band. In addition, we designed an attention-related task experiment to further study the relationship between tinnitus and attention. The results showed that the classification accuracy of tinnitus patients was significantly lower than that of healthy subjects, and the highest classification accuracies were 80.21% and 88.75%, respectively. The experimental results indicate that tinnitus may cause the decrease of patients’ attention.
Recent studies have introduced attention models for medical visual question answering (MVQA). In medical research, not only is the modeling of “visual attention” crucial, but the modeling of “question attention” is equally significant. To facilitate bidirectional reasoning in the attention processes involving medical images and questions, a new MVQA architecture, named MCAN, has been proposed. This architecture incorporated a cross-modal co-attention network, FCAF, which identifies key words in questions and principal parts in images. Through a meta-learning channel attention module (MLCA), weights were adaptively assigned to each word and region, reflecting the model’s focus on specific words and regions during reasoning. Additionally, this study specially designed and developed a medical domain-specific word embedding model, Med-GloVe, to further enhance the model’s accuracy and practical value. Experimental results indicated that MCAN proposed in this study improved the accuracy by 7.7% on free-form questions in the Path-VQA dataset, and by 4.4% on closed-form questions in the VQA-RAD dataset, which effectively improves the accuracy of the medical vision question answer.
[Abstract]Automatic and accurate segmentation of lung parenchyma is essential for assisted diagnosis of lung cancer. In recent years, researchers in the field of deep learning have proposed a number of improved lung parenchyma segmentation methods based on U-Net. However, the existing segmentation methods ignore the complementary fusion of semantic information in the feature map between different layers and fail to distinguish the importance of different spaces and channels in the feature map. To solve this problem, this paper proposes the double scale parallel attention (DSPA) network (DSPA-Net) architecture, and introduces the DSPA module and the atrous spatial pyramid pooling (ASPP) module in the “encoder-decoder” structure. Among them, the DSPA module aggregates the semantic information of feature maps of different levels while obtaining accurate space and channel information of feature map with the help of cooperative attention (CA). The ASPP module uses multiple parallel convolution kernels with different void rates to obtain feature maps containing multi-scale information under different receptive fields. The two modules address multi-scale information processing in feature maps of different levels and in feature maps of the same level, respectively. We conducted experimental verification on the Kaggle competition dataset. The experimental results prove that the network architecture has obvious advantages compared with the current mainstream segmentation network. The values of dice similarity coefficient (DSC) and intersection on union (IoU) reached 0.972 ± 0.002 and 0.945 ± 0.004, respectively. This paper achieves automatic and accurate segmentation of lung parenchyma and provides a reference for the application of attentional mechanisms and multi-scale information in the field of lung parenchyma segmentation.
In the clinical stage, suspected hemolytic plasma may cause hemolysis illness, manifesting as symptoms such as heart failure, severe anemia, etc. Applying a deep learning method to plasma images significantly improves recognition accuracy, so that this paper proposes a plasma quality detection model based on improved “You Only Look Once” 5th version (YOLOv5). Then the model presented in this paper and the evaluation system were introduced into the plasma datasets, and the average accuracy of the final classification reached 98.7%. The results of this paper's experiment were obtained through the combination of several key algorithm modules including omni-dimensional dynamic convolution, pooling with separable kernel attention, residual bi-fusion feature pyramid network, and re-parameterization convolution. The method of this paper obtains the feature information of spatial mapping efficiently, and enhances the average recognition accuracy of plasma quality detection. This paper presents a high-efficiency detection method for plasma images, aiming to provide a practical approach to prevent hemolysis illnesses caused by external factors.
Sleep stage classification is a necessary fundamental method for the diagnosis of sleep diseases, which has attracted extensive attention in recent years. Traditional methods for sleep stage classification, such as manual marking methods and machine learning algorithms, have the limitations of low efficiency and defective generalization. Recently, deep neural networks have shown improved results by the capability of learning complex pattern in the sleep data. However, these models ignore the intra-temporal sequential information and the correlation among all channels in each segment of the sleep data. To solve these problems, a hybrid attention temporal sequential network model is proposed in this paper, choosing recurrent neural network to replace traditional convolutional neural network, and extracting temporal features of polysomnography from the perspective of time. Furthermore, intra-temporal attention mechanism and channel attention mechanism are adopted to achieve the fusion of the intra-temporal representation and the fusion of channel-correlated representation. And then, based on recurrent neural network and inter-temporal attention mechanism, this model further realized the fusion of inter-temporal contextual representation. Finally, the end-to-end automatic sleep stage classification is accomplished according to the above hybrid representation. This paper evaluates the proposed model based on two public benchmark sleep datasets downloaded from open-source website, which include a number of polysomnography. Experimental results show that the proposed model could achieve better performance compared with ten state-of-the-art baselines. The overall accuracy of sleep stage classification could reach 0.801, 0.801 and 0.717, respectively. Meanwhile, the macro average F1-scores of the proposed model could reach 0.752, 0.728 and 0.700. All experimental results could demonstrate the effectiveness of the proposed model.
Attention can concentrate our mental resources on processing certain interesting objects, which is an important mental behavior and cognitive process. Recognizing attentional states have great significance in improving human’s performance and reducing errors. However, it still lacks a direct and standardized way to monitor a person’s attentional states. Based on the fact that visual attention can modulate the steady-state visual evoked potential (SSVEP), we designed a go/no-go experimental paradigm with 10 Hz steady state visual stimulation in background to investigate the separability of SSVEP features modulated by different visual attentional states. The experiment recorded the EEG signals of 15 postgraduate volunteers under high and low visual attentional states. High and low visual attentional states are determined by behavioral responses. We analyzed the differences of SSVEP signals between the high and low attentional levels, and applied classification algorithms to recognize such differences. Results showed that the discriminant canonical pattern matching (DCPM) algorithm performed better compared with the linear discrimination analysis (LDA) algorithm and the canonical correlation analysis (CCA) algorithm, which achieved up to 76% in accuracy. Our results show that the SSVEP features modulated by different visual attentional states are separable, which provides a new way to monitor visual attentional states.
Glaucoma is one of blind causing diseases. The cup-to-disc ratio is the main basis for glaucoma screening. Therefore, it is of great significance to precisely segment the optic cup and disc. In this article, an optic cup and disc segmentation model based on the linear attention and dual attention is proposed. Firstly, the region of interest is located and cropped according to the characteristics of the optic disc. Secondly, linear attention residual network-34 (ResNet-34) is introduced as a feature extraction network. Finally, channel and spatial dual attention weights are generated by the linear attention output features, which are used to calibrate feature map in the decoder to obtain the optic cup and disc segmentation image. Experimental results show that the intersection over union of the optic disc and cup in Retinal Image Dataset for Optic Nerve Head Segmentation (DRISHTI-GS) dataset are 0.962 3 and 0.856 4, respectively, and the intersection over union of the optic disc and cup in retinal image database for optic nerve evaluation (RIM-ONE-V3) are 0.956 3 and 0.784 4, respectively. The proposed model is better than the comparison algorithm and has certain medical value in the early screening of glaucoma. In addition, this article uses knowledge distillation technology to generate two smaller models, which is beneficial to apply the models to embedded device.
Objective To recognize the different phases of Korotkoff sounds through deep learning technology, so as to improve the accuracy of blood pressure measurement in different populations. Methods A classification model of the Korotkoff sounds phases was designed, which fused attention mechanism (Attention), residual network (ResNet) and bidirectional long short-term memory (BiLSTM). First, a single Korotkoff sound signal was extracted from the whole Korotkoff sounds signals beat by beat, and each Korotkoff sound signal was converted into a Mel spectrogram. Then, the local feature extraction of Mel spectrogram was processed by using the Attention mechanism and ResNet network, and BiLSTM network was used to deal with the temporal relations between features, and full-connection layer network was applied in reducing the dimension of features. Finally, the classification was completed by SoftMax function. The dataset used in this study was collected from 44 volunteers (24 females, 20 males with an average age of 36 years), and the model performance was verified using 10-fold cross-validation. Results The classification accuracy of the established model for the 5 types of Korotkoff sounds phases was 93.4%, which was higher than that of other models. Conclusion This study proves that the deep learning method can accurately classify Korotkoff sounds phases, which lays a strong technical foundation for the subsequent design of automatic blood pressure measurement methods based on the classification of the Korotkoff sounds phases.
Habitual snoring can occur in both children and adults. If it is physiological snoring, it usually does not require special intervention. If it is pathological snoring, such as snoring caused by central diseases and obstructive diseases, it needs to be treated as soon as possible. Habitual snoring has more harm to children, such as causing sleep structure disorders, slow growth and development. During the snoring process, children’s sleep fragmentation and hypoxia state lead to changes in the transmission of neurochemicals in the brain’s precortex, causing adverse effects on brain function and inducing attention deficit hyperactivity disorder. This article reviews relevant research in recent years to further elucidate the relationship between children’s habitual snoring and attention deficit hyperactivity disorder, and provide a basis for future clinical research and intervention.
Medical studies have found that tumor mutation burden (TMB) is positively correlated with the efficacy of immunotherapy for non-small cell lung cancer (NSCLC), and TMB value can be used to predict the efficacy of targeted therapy and chemotherapy. However, the calculation of TMB value mainly depends on the whole exon sequencing (WES) technology, which usually costs too much time and expenses. To deal with above problem, this paper studies the correlation between TMB and slice images by taking advantage of digital pathological slices commonly used in clinic and then predicts the patient TMB level accordingly. This paper proposes a deep learning model (RCA-MSAG) based on residual coordinate attention (RCA) structure and combined with multi-scale attention guidance (MSAG) module. The model takes ResNet-50 as the basic model and integrates coordinate attention (CA) into bottleneck module to capture the direction-aware and position-sensitive information, which makes the model able to locate and identify the interesting positions more accurately. And then, MSAG module is embedded into the network, which makes the model able to extract the deep features of lung cancer pathological sections and the interactive information between channels. The cancer genome map (TCGA) open dataset is adopted in the experiment, which consists of 200 pathological sections of lung adenocarcinoma, including 80 data samples with high TMB value, 77 data samples with medium TMB value and 43 data samples with low TMB value. Experimental results demonstrate that the accuracy, precision, recall and F1 score of the proposed model are 96.2%, 96.4%, 96.2% and 96.3%, respectively, which are superior to the existing mainstream deep learning models. The model proposed in this paper can promote clinical auxiliary diagnosis and has certain theoretical guiding significance for TMB prediction.