west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "antibacterial" 24 results
  • Research progress of antibacterial modification of orthopaedic implants surface

    ObjectiveTo summarize the related research progress of antibacterial modification of orthopaedic implants surface in recent years. Methods The domestic and foreign related literature in recent years was extensively consulted, the research progress on antibacterial modification of orthopaedic implants surface was discussed from two aspects of characteristics of infection in orthopedic implants and surface anti-infection modification. Results The orthopaedic implants infections are mainly related to aspects of bacterial adhesion, decreased host immunity, and surface biofilm formation. At present, the main antimicrobial coating methods of orthopaedic implants are antibacterial adhesion coating, antibiotic coating, inorganic antimicrobial coating, composite antimicrobial coating, nitric oxide coating, immunomodulation, three-dimensional printing, polymer antimicrobial coating, and “smart” coating. Conclusion The above-mentioned antibacterial coating methods of orthopedic implants can not only inhibit bacterial adhesion, but also solve the problems of low immunity and biofilm formation. However, its mechanism of action and modification are still controversial and require further research.

    Release date:2022-05-07 02:02 Export PDF Favorites Scan
  • Study on biological characteristics and stability of the linear derivative Bac2a from bactenecin

    The objective of the study is to analyze the biological characteristics and stability of the linear derivative Bac2a from bactenecin, compared with the control peptide melittin. The secondary structure, antibacterial activity, hemolytic activity, cell toxicity and stability of the Bac2a were determined by circular dichroism spectroscopy, broth micro-dilution method and MTT assay. The results showed that Bac2a was a nonregular curl in aqueous solution, however, it was an α-helix structure in the hydrophobic environment. The minimal inhibitory concentration (MIC) of Bac2a ranged from 2 to 32 μmol/L, so the bacteriostatic activity of Bac2a was strong. The hemolytic rate was only 14.81% when the concentration of Bac2a was 64 μmol/L, which showed that the hemolytic rate of Bac2a was low. The therapy index of Bac2a was 3.26, and the cytotoxicity was relatively low, thus the cell selectivity was relatively high. In addition, with the heating treatment of 100℃ for 1 h, Bac2a still possessed rather a high antibacterial activity and showed a good heating stability. In a word, Bac2a has good application prospects in food, medicine and other fields, and is expected as a substitute for traditional antibiotics.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
  • Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants

    ObjectiveTo review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research. MethodsThe related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances. ResultsAt present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity. ConclusionThe factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.

    Release date:2023-10-11 10:17 Export PDF Favorites Scan
  • Preparation of berberine-naringin dual drug-loaded composite microspheres and evaluation of their antibacterial-osteogenic properties

    Objective To develop a drug-loaded composite microsphere that can simultaneously release the berberine (BBR) and naringin (NG) to repair infectious bone defects. MethodsThe NG was loaded on mesoporous microspheres (MBG) to obtain the drug-loaded microspheres (NG-MBG). Then the dual drug-loaded compound microspheres (NG-MBG@PDA-BBR) were obtained by wrapping NG-MBG with polydopamine (PDA) and modifying the coated PDA with BBR. The composite microspheres were characterized by scanning electron microscopy, X-ray diffraction, specific surface area and pore volume analyzer, and Fourier transform infrared spectroscopy; the drug loading rate and release of NG and BBR were measured; the colony number was counted and the bacterial inhibition rate was calculated after co-culture with Staphylococcus aureus and Escherichia coli for 12 hours to observe the antibacterial effect; the biocompatibility was evaluated by live/dead cell fluorescence staining and cell counting kit 8 assay after co-culture with rat’s BMSCs for 24 and 72 hours, respectively, and the osteogenic property was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining after 7 and 14 days, respectively. Results NG-MBG@PDA-BBR and three control microspheres (MBG, MBG@PDA, and NG-MBG@PDA) were successfully constructed. Scanning electron microscopy showed that NG-MBG@PDA-BBR had a rough lamellar structure, while MBG had a smooth surface, and MBG@PDA and NG-MBG@PDA had a wrapped agglomeration structure. Specific surface area analysis showed that MBG had a mesoporous structure and had drug-loading potential. Low angle X-ray diffraction showed that NG was successfully loaded on MBG. The X-ray diffraction pattern contrast showed that all groups of microspheres were amorphous. Fourier transform infrared spectroscopy showed that NG and BBR peaks existed in NG-MBG@PDA-BBR. NG-MBG@PDA-BBR had good sustained drug release ability, and NG and BBR had early burst release and late sustained release. NG-MBG@PDA-BBR could inhibit the growth of Staphylococcus aureus and Escherichia coli, and the antibacterial ability was significantly higher than that of MBG, MBG@PDA, and NG-MBG@PDA (P<0.05). But there was a significant difference in biocompatibility at 72 hours among microspheres (P<0.05). ALP and alizarin red staining showed that the ALP positive area and the number of calcium nodules in NG-MBG@PDA-BBR were significantly higher than those of MBG and NG-MBG (P<0.05), and there was no significant difference between NG-MBG@PDA and NG-MBG@PDA (P>0.05). Conclusion NG-MBG@PDA-BBR have sustained release effects on NG and BBR, indicating that it has ideal dual performance of osteogenesis and antibacterial property.

    Release date:2023-12-12 05:09 Export PDF Favorites Scan
  • Near-infrared excited graphene oxide/silver nitrate/chitosan coating for improving antibacterial properties of titanium implants

    Objective To design and construct a graphene oxide (GO)/silver nitrate (Ag3PO4)/chitosan (CS) composite coating for rapidly killing bacteria and preventing postoperative infection in implant surgery. Methods GO/Ag3PO4 composites were prepared by ion exchange method, and CS and GO/Ag3PO4 composites were deposited on medical titanium (Ti) sheets successively. The morphology, physical image, photothermal and photocatalytic ability, antibacterial ability, and adhesion to the matrix of the materials were characterized. Results The GO/Ag3PO4 composites were successfully prepared by ion exchange method and the heterogeneous structure of GO/Ag3PO4 was proved by morphology phase test. The heterogeneous structure formed by Ag3PO4 and GO reduced the band gap from 1.79 eV to 1.39 eV which could be excited by 808 nm near-infrared light. The photothermal and photocatalytic experiments proved that the GO/Ag3PO4/CS coating had excellent photothermal and photodynamic properties. In vitro antibacterial experiments showed that the antibacterial rate of the GO/Ag3PO4/CS composite coating against Staphylococcus aureus reached 99.81% after 20 minutes irradiation with 808 nm near-infrared light. At the same time, the composite coating had excellent light stability, which could provide stable and sustained antibacterial effect. ConclusionGO/Ag3PO4/CS coating can be excited by 808 nm near infrared light to produce reactive oxygen species, which has excellent antibacterial activity under light.

    Release date:2023-08-09 01:37 Export PDF Favorites Scan
  • Research progress of drug-loaded antibacterial coating of orthopedic metal implants

    Objective To investigate the research progress of drug-loaded antibacterial coating of orthopedic metal implants in recent years. Methods The recent literature on the drug-loaded antibacterial coating of orthopedic metal implants were reviewed. The research status, classification, and development trend of drug-loaded antibacterial coating were summarized. Results The drug-loaded antibacterial coating of orthopedic metal implants can be divided into passive release type and active release type according to the mode of drug release. Passive drug release coating can release the drug continuously regardless of whether the presence of bacteria around the implants. Active drug release coating do not release the drug unless the presence of bacteria around the implants. Conclusion The sustained and stable release of drugs is a key problem to be solved in various antibacterial coatings research. The intelligent antibacterial coating which release antibiotics only in the presence of bacteria is the future direction of development.

    Release date:2017-11-09 10:16 Export PDF Favorites Scan
  • Study on the Role of the Coated VICRYL Plus Antibacterial Suture in the Prevention of Infection of Appendectomy Incision

    摘要:目的: 探讨在阑尾切除术中应用抗菌薇乔缝线以减少阑尾切口感染的可能性。 方法 : 将我院2007年4月至2009年3月所有阑尾切除术病例1425例随机分为抗菌薇乔缝线组和丝线组,比较其切口感染发生率。 结果 : 统计中按阑尾未穿孔、阑尾穿孔以及总计分别计算切口感染率,在抗菌微乔线组感染率分别为017%、072%、028%,丝线组分别为154%、781%、267%,两组间分别予以X2检验,其〖WTBX〗P 值均小于001,具有显著性差异。 结论 : 缝线是辅助产生切口感染的一个危险因素,在阑尾切除术中使用抗菌薇乔缝线可以显著降低切口感染率。Abstract: Objective: To investigate the application of Coated VICRYL Plus Antibacterial suture in order to reduce the possibility of infection of appendectomy incision. Methods : Hospital from April 2007 to March 2009 appendectomy patients in all 1425 cases were randomly divided into Coated VICRYL Plus Antibacterial suture group and silk group,compared to the incidence of incision infection. Results : The statistics are not in accordance with perforated appendicitis, perforated appendicitis, as well as calculation of the total, respectively, incision infection, the infection rate in the Coated VICRYL Plus Antibacterial suture group were 017%, 072%, 028%, silk group were 154%, 781%, 267% between the two groups separately X2 test, the P value of less than 001, with a significant difference. Conclusion : The suture is to assist the incision produced a risk factor for infection in appendectomy,Coated VICRYL Plus Antibacterial suture can be used in a significant reduction in incision infection rates.

    Release date:2016-09-08 10:12 Export PDF Favorites Scan
  • Research Progress in Preparation of Antimicrobial Peptides and Their Mechanisms of Action

    Currently, all the conventional antibiotics have developed corresponding drug-resistant pathogenic strains, which have increasingly become a serious threat to people's health. Development of completely new types of antibiotics is one of effective ways to solve the drug resistance issue. Antimicrobial peptides with broad-spectrum antibacterial and antimicrobial activity and wild variety become the ideal alternative to traditional antibiotics. Antimicrobial peptides are derived from wide range of sources, such as plants, animals, and microorganisms. Mechanism of function of the antimicrobial peptides and the investigation approaches of different antimicrobial peptides also vary dramatically. In this paper, we give an overview of preparation, antibacterial mechanisms, and research methodology of antimicrobial peptides.

    Release date: Export PDF Favorites Scan
  • Preparation and Characterization of Chitosan-Poloxamer-based Antibacterial Hydrogel Containing Silver Nanoparticles

    In order to solve the problem of high cytotoxicity in vitro of nano-silver antibacterial gel, and the problem of large nano-silver particle size and size distribution, this study prepared nano-silver antibacterial gel with better biocompatibility and good antibacterial effect by using physical cross-linking method and using poloxamer as dispersant when prepared nano-silver. In this study, nano-silver was prepared by photo-initiator method and by adding poloxamer as a dispersant, and then UV-visible absorption spectrum test and scanning electron microscopy (SEM) test were carried out using prepared nano-silver mixture and particles after drying respectively. The gel was prepared through adjusting its pH value by using sodium bicarbonate, and then pH value test, SEM test for cross-section of gel, swelling ratio test, viscosity test, inhibition zone test and in vitro cytotoxicity test were carried out. The test results showed that the maximum absorption wavelength of prepared nano-silver, using poloxamer as dispersant and ultra-pure water as solvent, was 414 nm, and the average nano-silver size was about 60 nm. The prepared nano-silver using poloxamer as dispersant had smaller particle diameter and narrower particle size distribution than those using PVP as dispersant. Similarly, the prepared nano-silver using ultra-pure water as solvent also had smaller particle diameter and narrower particle size distribution than those using distilled water as solvent. The pH value of the prepared gel was between 5.8~6.1. The dried gel section had many holes. The water absorption of gel was fine and the viscosity of gel was fit to coat on the gauze. In addition, the prepared gel with nano-silver had greater ability to inhibit Escherichia coli and Staphyloccocus aureus at the concentrations of 24, 18 and 12 μg/mL. And the biocompatibility of the prepared gel with nano-silver was good when the concentration below 24 μg/mL. Based on the above features, the nano-silver antibacterial gel could be used in the treatment of burn or other wounds.

    Release date:2016-12-19 11:20 Export PDF Favorites Scan
  • Mechanical and light-activated antibacterial properties of resin filled with Ag-TiO2 nanoparticles

    The poor mechanical property and vulnerability to bacterial infections are the main problems in clinic for dental restoration resins. Based on this problem, the purpose of this study is to synthesize silver-titanium dioxide (Ag-TiO2) nanoparticles with good photocatalytic properties, and add them to the composite resin to improve the mechanical properties and photocatalytic antibacterial capability of the resin. The microstructure and chemical composition of Ag-TiO2 nanoparticles and composite resins were characterized. The results indicated that Ag existed in both metallic and silver oxide state in the Ag-TiO2, and Ag-TiO2 nanoparticles were uniformly dispersed in the resins. The results of mechanical experiments suggested that the mechanical properties of the composite resin were significantly improved due to the incorporation of Ag-TiO2 nanoparticles. The antibacterial results indicated that the Ag-TiO2 nanoparticle-filled composite resins exhibited excellent antibacterial activities under 660 nm light irradiation for 10 min due to the photocatalysis, and the Ag-TiO2 nanoparticle-filled composite resins could also exhibit excellent antibacterial activities after contact with bacteria for 24 h without light irradiation because of the release of Ag ions. In summary, this study provides a new antibacterial idea for the field of dental composite resins.

    Release date:2022-10-25 01:09 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content