west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Wear" 21 results
  • EXPRESSION OF CASPASE-3 AND APOPTOSIS IN INTERFACE MEMBRANES OF ASEPTICALLY-LOOSE TOTAL HIP REPLACEMENT

    Objective To observe expression of Caspase-3 and apoptosis around the prosthesis and explore the relationship of the expression and the apoptosis with the periimplant osteolysis. Methods From April 2001 to August 2006, 16 patients (10 males, 6 females) underwent the revision total hip arthroplasty surgery, who had the primary total hip arthroplasty at the ages of 45-67 years and had the revision total hip arthroplasty at the ages of 55-78 years, with the implantation duration of 7-13 years. According to their preoperative X-ray films andthe findings during the operation, the patients were divided into two groups: theloose/osteolytic group (n=8) and the loose/non-osteolytic group (n=8). The interface tissues were obtained from the peri-implant region in the patients. The synovial samples were taken from another 6 patients (2 males, 4 females; age, 54-68years; illness course, 9-15 years), who underwent the primary total hip arthroplasty for osteoarthritis. These 6 patients were used as controls. The tissues were prepared for the immunohistochemical assays to determine the expression of Caspase-3. The TUNEL assays were performed to quantify the apoptotic cells. The quantitative analysis on the positive cells and the correlation with the presence of the particulate wear debris and the severity of osteolysis were also performed. Results The level of the expression for Caspase-3 and the apoptosis index inthe loose/osteolytic group were significantly increased when compared with those in the loose/non-osteolytic group and the control group (P<0.01). The polyethylene particles were surrounded by more positive cells than the metal particles. The positive cells were present at a higher level in the tissue sections where the high-wear status was present when compared with the areas where the low-wear status was present (P<0.05). Conclusion There is a statistical correlation of the Caspase-3 expression to the apoptosis index and to the presence of the particulate wear debris and the severity of osteolysis, which may be one of the key points for the bone reconstruction inhibition and the bone resorption at the boneimplant interface under the stimulation of the wear debris. The apoptosis is involved in the pathogenesis of the aseptic loosening, which is closely related to the signal transportation of Caspase-3.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns

    Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer’s lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer’s lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.

    Release date:2022-04-24 01:17 Export PDF Favorites Scan
  • Advances in research on the use of wearable devices in cardiovascular diseases

    ObjectiveWearable devices refer to a class of monitoring devices that can be tightly integrated with the human body and are designed to continuously monitor individual's activity without impeding or restricting the user's normal activities in the process. With the rapid advancement of chips, sensors, and artificial intelligence technologies, such devices have been widely used for patients with cardiovascular diseases who require continuous health monitoring. These patients require continuous monitoring of a number of physiological indicators to assess disease progression, treatment efficacy, and recovery in the early stages of the disease, during the treatment, and in the recovery period. Traditional monitoring methods require patients to see a doctor on a regular basis with the help of fixed devices and analysis by doctors, which not only increases the financial burden of patients, but also consumes medical resources and time. However, wearable devices can collect data in real time and transmit it directly to doctors via the network, thus providing an efficient and cost-effective monitoring solution for patients. In this paper, we will review the applications, advantages and challenges of wearable devices in the treatment of cardiovascular diseases, as well as the outlook for their future applications.

    Release date:2025-05-30 08:48 Export PDF Favorites Scan
  • Effect of prosthetic joint line installation height errors on insert wear in unicompartmental knee arthroplasty

    The clinical performance and failure issues are significantly influenced by prosthetic malposition in unicompartmental knee arthroplasty (UKA). Uncertainty exists about the impact of the prosthetic joint line height in UKA on tibial insert wear. In this study, we combined the UKA musculoskeletal multibody dynamics model, finite element model and wear model to investigate the effects of seven joint line height cases of fixed UKA implant on postoperative insert contact mechanics, cumulative sliding distance, linear wear depth and volumetric wear. As the elevation of the joint line height in UKA, the medial contact force and the joint anterior-posterior translation during swing phase were increased, and further the maximum von Mises stress, contact stress, linear wear depth, cumulative sliding distance, and the volumetric wear also were increased. Furthermore, the wear area of the insert gradually shifted from the middle region to the rear. Compared to 0 mm joint line height, the maximum linear wear depth and volumetric wear were decreased by 7.9% and 6.8% at –2 mm joint line height, and by 23.7% and 20.6% at –6 mm joint line height, the maximum linear wear depth and volumetric wear increased by 10.7% and 5.9% at +2 mm joint line height, and by 24.1% and 35.7% at +6 mm joint line height, respectively. UKA prosthetic joint line installation errors can significantly affect the wear life of the polyethylene inserted articular surfaces. Therefore, it is conservatively recommended that clinicians limit intraoperative UKA joint line height errors to –2−+2 mm.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Development of flexible multi-phase barium titanate piezoelectric sensor for physiological health and action behavior monitoring

    Self-powered wearable piezoelectric sensing devices demand flexibility and high voltage electrical properties to meet personalized health and safety management needs. Aiming at the characteristics of piezoceramics with high piezoelectricity and low flexibility, this study designs a high-performance piezoelectric sensor based on multi-phase barium titanate (BTO) flexible piezoceramic film, namely multi-phase BTO sensor. The substrate-less self-supported multi-phase BTO films had excellent flexibility and could be bent 180° at a thickness of 33 μm, and exhibited good bending fatigue resistance in 1 × 104 bending cycles at a thickness of 5 μm. The prepared multi-phase BTO sensor could maintain good piezoelectric stability after 1.2 × 104 piezoelectric cycle tests. Based on the flexibility, high piezoelectricity, wearability, portability and battery-free self-powered characteristics of this sensor, the developed smart mask could monitor the respiratory signals of different frequencies and amplitudes in real time. In addition, by mounting the sensor on the hand or shoulder, different gestures and arm movements could also be detected. In summary, the multi-phase BTO sensor developed in this paper is expected to develop convenient and efficient wearable sensing devices for physiological health and behavioral activity monitoring applications.

    Release date:2024-06-21 05:13 Export PDF Favorites Scan
  • Artificial intelligence in wearable electrocardiogram monitoring

    Electrocardiogram (ECG) monitoring owns important clinical value in diagnosis, prevention and rehabilitation of cardiovascular disease (CVD). With the rapid development of Internet of Things (IoT), big data, cloud computing, artificial intelligence (AI) and other advanced technologies, wearable ECG is playing an increasingly important role. With the aging process of the population, it is more and more urgent to upgrade the diagnostic mode of CVD. Using AI technology to assist the clinical analysis of long-term ECGs, and thus to improve the ability of early detection and prediction of CVD has become an important direction. Intelligent wearable ECG monitoring needs the collaboration between edge and cloud computing. Meanwhile, the clarity of medical scene is conducive for the precise implementation of wearable ECG monitoring. This paper first summarized the progress of AI-related ECG studies and the current technical orientation. Then three cases were depicted to illustrate how the AI in wearable ECG cooperate with the clinic. Finally, we demonstrated the two core issues—the reliability and worth of AI-related ECG technology and prospected the future opportunities and challenges.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Research on performance optimization method of human-machine physical interaction system considering exoskeleton wearing comfort

    In order to improve the wearing comfort and bearing effectiveness of the exoskeleton, based on the prototype and working mechanism analysis of a relaxation wearable system for knee exoskeleton robot, the static optimization synthesis and its method are studied. Firstly, based on the construction of the virtual prototype model of the system, a comprehensive wearable comfort evaluation index considering the factors such as stress, deformation and the proportion of stress nodes was constructed. Secondly, based on the static simulation and evaluation index of system virtual prototype, multi-objective genetic optimization and local optimization synthesis of armor layer topology were carried out. Finally, the model reconstruction simulation data confirmed that the system had good wearing comfort. Our study provides a theoretical basis for the bearing performance and prototype construction of the subsequent wearable system.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • A gait signal acquisition and parameter characterization method based on foot pressure detection combined with Azure Kinect system

    The gait acquisition system can be used for gait analysis. The traditional wearable gait acquisition system will lead to large errors in gait parameters due to different wearing positions of sensors. The gait acquisition system based on marker method is expensive and needs to be used by combining with the force measurement system under the guidance of rehabilitation doctors. Due to the complex operation, it is inconvenient for clinical application. In this paper, a gait signal acquisition system that combines foot pressure detection and Azure Kinect system is designed. Fifteen subjects are organized to participate in gait test, and relevant data are collected. The calculation method of gait spatiotemporal parameters and joint angle parameters is proposed, and the consistency analysis and error analysis of the gait parameters of proposed system and camera marking method are carried out. The results show that the parameters obtained by the two systems have good consistency (Pearson correlation coefficient r ≥ 0.9, P < 0.05) and have small error (root mean square error of gait parameters is less than 0.1, root mean square error of joint angle parameters is less than 6). In conclusion, the gait acquisition system and its parameter extraction method proposed in this paper can provide reliable data acquisition results as a theoretical basis for gait feature analysis in clinical medicine.

    Release date:2023-06-25 02:49 Export PDF Favorites Scan
  • Application and progress of wearable devices in epilepsy monitoring, prediction, and treatment

    Epilepsy is a complex and widespread neurological disorder that has become a global public health issue. In recent years, significant progress has been made in the use of wearable devices for seizure monitoring, prediction, and treatment. This paper reviewed the applications of invasive and non-invasive wearable devices in seizure monitoring, such as subcutaneous EEG, ear-EEG, and multimodal sensors, highlighting their advantages in improving the accuracy of seizure recording. It also discussed the latest advances in the prediction and treatment of seizure using wearable devices.

    Release date:2024-08-23 04:11 Export PDF Favorites Scan
  • Experimental study of the response of articular cartilage surface roughness to load

    Cartilage surface fibrosis is an early sign of osteoarthritis and cartilage surface damage is closely related to load. The purpose of this study was to study the relationship between cartilage surface roughness and load. By applying impact, compression and fatigue loads on fresh porcine articular cartilage, the rough value of cartilage surface was measured at an interval of 10 min each time and the change rule of roughness before and after loading was obtained. It was found that the load increased the roughness of cartilage surface and the increased value was related to the load size. The time of roughness returning to the initial condition was related to the load type and the load size. The impact load had the greatest influence on the roughness of cartilage surface, followed by the severe fatigue load, compression load and mild fatigue load. This article provides reference data for revealing the pathogenesis of early osteoarthritis and preventing and treating articular cartilage diseases.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content