This study was performed on canine femoral veins which were interpositionally implanted into the femoral arteries and the investigation was in terms of zero-stress state, compliance and hemodynamic assessment. The results revealed that the vein grafts had the similar characteristics of compliance with the normal veins. Using Doppler ultrasonography to monitor the blood flow velocity through the vein grafts, the hemodynamic parameters such as pulsatility index (PI) and blood flow volume were evaluated consecutively within one month after the operations .No significant differences were found between these parameters at different time points. It was suggested that autogenous vein graft had an adaptive course when operating in an arterial hemodynamic circumstances and It’s mechanical changes did not bear upon the hemodynamics through the vein graft.
ObjectiveTo detect the inhibitory effect of early growth response gene-1 DNA enzyme (EDRz) on proliferation of vascular smooth muscle cell (VSMC) and intimal hyperplasia, and confirm the effect of gene therapy on stenosis and occlusion after vein transplantation. MethodsEDRz was constructed, and autogenous vein graft model was established with Wistar rats, transplanting the right jugular vein to infra renal abdominal aorta by microsurgical technique. EDRz was transfected to the graft veins and the vein graft samples were harvested at hour 1, 2, 6, 24 and on day 3, 7, 14, 28, 42 after grafting, 10 Wistar rats were randomly selected in every time. The expression of EDRz in transfected vein graft was detected by fluorescent microscope. Egr-1 mRNA was measured by reverse transcription-PCR (RT-PCR) and in situ hybridization, respectively. The protein expression of Egr-1 was detected by Western blot and immunohistochemistry, respectively. HE stained vein grafts were observed under microscope. Results① The results of EDRz transfected vein graft: At hour 1 after grafting, EDRz was mainly located in adventitia, tunica media, and partial endothelial cells of vein graft; At hour 2, 6, and 24, EDRz was located in tunica media of vein graft; and on day 7, it was mainly located in intima of vein graft. There wasn’t EDRz in vein grafts on day 14, 28, and 42. ② The results of expression of Egr-1 mRNA: Detection by RT-PCR: At hour 1 after transfecting, the expression of Egr-1 mRNA arrived at the peak, and declined at hour 2, 6, and 24. The expression was tenuity on day 3. Egr-1 mRNA expression was not found on day 7, 14, 28, and 42. The expression of Egr-1 mRNA at hour 1 was significantly higher than that of the other time point (Plt;0.01). The result of in situ hybridization was coincident with RT-PCR. ③ The results of expression of Egr-1 protein: The result of Western blot: There was no expression of Egr-1 protein in normal veins. At hour 2 after grafting, expression of Egr-1 protein was found, and declined at hour 6, 24, and on day 3. There was no expression of Egr-1 protein at hour 1, and on day 7, 14, 28, and 42. The expression of Egr-1 protein at hour 2 was significantly higher than that of the other time point (Plt;0.01). The result of immunohistochemistry was coincident with Western blot. ④The degree of VSMC hyperplasia and intimal thickness were lighter in EDRz transfected vein grafts than that in nottransfected vein grafts contemporarily. ConclusionsEDRz could reduce the expression of Egr-1 in autogenous vein graft, and could effectively restrain VSMC proliferation and intimal hyperplasia, and prevent vascular stenosis and occlusion after vein grafting.
Objective To investigate the effect and mechanism of epigallocatechin-3-gallate (EGCG) on restenosis of the vein graft. Methods Totally 90 Sprague-Dawley rats were randomly divided a the control group, a vein graft group and an EGCG+vein graft group. At week 1, 2 and 4, the intimal and tunica thickness of the venous graft wall was evaluated by hematoxylin-eosin staining, and the expression of Ki-67 was assessed by immunohistochemistry analysis, and then the expression of hairy and enhancer of split-1 (HES1) was measured by Western blot assay. Results At week 2, the intimal thickness (46.76±4.89 μmvs. 8.93±0.82 μm, 46.76±4.89 μmvs. 34.24±3.57 μm), tunica thickness (47.28±4.37vs. 16.33±1.52 μm, 47.28±4.37vs. 36.27±3.29 μm), positive cell rate of Ki-67 (21.59%±2.29%vs. 1.12%±0.22%, 21.59%±2.29%vs. 15.38%±1.30%), expression of HES1 respectively increased in the experimental group than those in the control group and the EGCG+vein graft group (P<0.05, respectively). At week 4, the intimal thickness (66.38±6.23 μmvs. 8.29±0.79 μm, 66.38±6.23 μmvs. 48.39±4.23 μm), tunica thickness (63.27±6.18 μmvs. 15.29±1.49 μm, 63.27±6.18 μmvs. 44.63±4.49 μm), positive cell rate of Ki-67 (33.19%±3.03%vs. 1.09%±0.19%, 33.19%±3.03%vs. 24.37%±2.73%), expression of HES1 increased in the experimental group than those in the control group and EGCG+vein graft group (P<0.05, respectively). Conclusion EGCG may inhibite restenosis of vein graft by inhibiting Notch signal pathway.
Abstract:Objective To evaluate the effect of external stents on preventing vein graft neointima formation and medial thickening with non-restrictive macro porous polyester stent around porcine vein grafts. Methods Studies were performed by using "white race" pigs (n= 10) weight 25-30 kg. All the animals underwent bilateral saphenous vein into carotid artery bypass grafting. In each animal, a maeroporous stent was placed around a graft on one side and a control (unstented) graft on the opposite side. The polyester stent was shaped to cover both anastomoses completely. The size of the stem allowed unrestricted expansion of the graft in initial response to arterial pressure. After 35 days of surgery,all animals were taken to remove the grafts. Graft wall dimensions, platelet- derived growth factor (PDGF) expression and cell proliferation using proliferating cell nuclear antigen (PCNA) were measured on histological sections. Results Stents significantly reduced neointimal thickening (0. 4872 ± 0. 0706 mm vs. 0. 2259± 0. 0553mm,P〈0. 01)and medial thickening (0. 6246±0. 0859mm vs. 0. 4201±0. 0615mm,P〈0. 01). Stents significantly reduced the percentage of cells expressing PDGF and PCNA. Media, intimal PCNA index was reduced from 7. 980/00± 4. 060/00 to 3.35±0.95%(P〈0.01), PDGF index was reduced from 9.47%±5.35% to 2.67%± 0.97% (P 〈0. 01). Conclusion External non-restrictive polyester stent can significantly inhibit neointimal formation and medial thickening, and may prevent late vein grafts restenosis.
ObjectiveTo evaluate the effect of low power red laser illumination on the intimal proliferative response in vein graft models.MethodsAutogenous vein graft models were established in 80 rats by transplanting jugular vein to carotid artery by end to end anastomosis, and were randomized into two groups: control group (graft nonilluminated), laser illumination group (0.9 J/cm2).The grafted veins were harvested at 3,7,14 or 28 day respectively after operation. IH (intimal hyperplasia) and SMC (smooth muscle cell) proliferations were pathologically and immunohistochemically observed and analyzed by computer digitizing system. ResultsThere were no significant differences in the intimal average thickness and the areas of lumen between two groups for 3 day. Laser group was significantly lower than the control in both the intimal average thickness and the stenosis of lumen at 7 day,14 day and 28 day (P<0.05).Immunohistochemical analysis of PCNA indicate the decreased positive cell in laser group compared with the control group (P<0.01).ConclusionThese preliminary results demonstrate that a certain density of low power red laser illumination in vein graft inhibits SMC proliferation and neointimal hyperplasia in rat.
Objective To investigate the development and significance of the expression of early growth response gene-1 (EGR-1) in autogenous vein graft in rats and detect the role of it in intimal hyperplasia. Methods Autogenous vein graft model was established in 90 Wistar rats, transplanting the right jugular vein to infra renal abdominal aorta by microsurgical technique. The vein graft samples were harvested at hour 1, 2, 6 and 24, day 3, 7,14, 28 and 42 after procedure. Normal vein as control group. Egr-1 mRNA was measured by reverse transcription-PCR and in situ hybridization. Western blot and immunohistochemistry were used to detect the protein expression of Egr-1. Results Intimal hyperplasia reached peak at day 28 after autogenous vein graft surgery. Egr-1 mRNA and Egr-1 protein hadn’t been found in the normal vein. The expressions of Egr-1 mRNA and Egr-1 protein had biphasic changes. By reverse transcription-PCR and in situ hybridization, we found that the level of Egr-1 mRNA rose at 1 hour after graft, the expression of Egr-1 mRNA was (35±7)%. Decline at hour 6, 24 and day 3, the positive rates of Egr-1 mRNA were (8±2)%, (8±6)% and (8±4)% respectively. Reincrease at day 7, a peak at day 28, the positive rate of Egr-1 mRNA was (45±6)% (compared with other phase, P<0.01). At day 42, the expression of Egr-1 mRNA declined again. Immunohistochemical staining and Western blot revealed Egr-1 protein had expressed at hour 2 early phase, the expression of Egr-1 protein was (30±5)%, and until to hour 6. The level of Egr-1 protein was decrease at hour 24 and day 3, the positive rates were (7±3)% and (7±8)% respectively. A peak at day 28, the positive rate of Egr-1 protein was (40±9)% (compared with other phase, P<0.01). We found that immu-noreative Egr-1 located vascular smooth muscle cells (VSMCs) and monocytes/macrophages in tunica media at the early phase of day 7 and 14, and in neointimal and medial VSMCs at later phase of day 28. Egr-1 was also present in the endoluminal endothelial cells. Conclusion In autogenous vein graft, Egr-1 plays an important role in the proliferation of VSMCs. Egr-1 may become a new target for the prevention and therapy of intimal hyperplasia, stenosis and emphraxis after vein graft.
In order to develope a new method to overcome the difficulties in anastomosis of blood vessels with different diameter, phleboplasty was utilized at the join-point to expand the diameter of branched vein graft, with a funnel-shaped stoma formed consequently. After successfully experimented in fresh blood vessels in vitro, the method was practised clinically to repair injured arteries in extremities, with the outcome that phleboplasty of branched vein graft could enlarge the diameter by 1-1.25 times, and with satisfied effects in 3 clinic cases. So, the conclusion was that: phleboplasty of branched vein graft was a new effective and convinient method to repair injured arteries with different diameters
Abstract: Objective To determine the effects of oxidative stress reaction on intima hyperplasia after autologous vein grafting. Methods Seventy female SpragueDawley(SD) rats were randomly divided into a control group(n=10) and an experimental group (n=60). The experimental group was then divided into six time points of one day; one, two, four, and six weeks; and two months after surgery; with 10 rats for each time point. Autologous vein grafting models were established. At each time point the designated rats were anaesthetized, and the grafts were isolated and stained with HE. The same length of external jugular vein was cut from each rat in the control group. The neointima to tunica media area ratios (I/M) were measured with acomputerized digital image analysis system. Nuclear factorkappa B (NF-κB) and copper zinc superoxide dismutase (CuZnSOD) were detected byimmunohistochemistry. The concentration of malondialdehyde (MDA) in serum was analyzed by colorimetry. Results In the control group, expression levels of NF-κB and CuZnSOD were low. In the experimental group, expression of NF-κB increased after the operation and peaked two weeks later. The plateau was sustained for about one month, and then the level of expression declined gradually, reaching the baseline at the twomonth time point. The expression of CuZnSOD increased gradually after the operation and peaked one week later, then declined to the normal level after 2-3 weeks at the plateau. In the control group, the concentration of serum MDA was 4.966±1.346 nmol/ml. In the experimental -group, the-MDA concentration increased dramatically after the operation, then-declined from its highest level at the oneday time point (21.161±2.174 nmol/ml) to the normal level at two months (6.208±2.908 nmol/ml) after the operation (P<0.05). In the control group, I/M was 0.2096±0.0253, while in the experimental group, it was higher one week after the operation (0.6806±0.0737) and peaked at four weeks (1.4527±0.0824), falling to 1.0353±00656 at six weeks and 0.9583±0.0516 attwo months (P<0.05) for the experimental and control groups). Conclusion Endothelial cell injury initiates an oxidative stress reaction after autologous vein grafting and augments inflammation by activating NF-κB, thus playing an important role in inducing restenosis of the grafted vein.
Objective To investigate the effect and mechanism of calcitonin gene-related peptide (CGRP) on the prevention and treatment of transplant vein graft disease. Methods The 25 New Zealand white rabbits were divided into three groups: an experimental group [n=8, the rabbit jugular veins transfected with adeno-associated virus vector tipe 2/1 containing CGRP gene (AAV2/1-CGRP)], a carrier group [n=9, transfected with mosaic adeno-associated virus vector tipe 2/1 containing LacZ gene (AAV2/1-LacZ)] and a control group (n=8, saline) and then the cervical veins were implantated into the ipsilateral carotid artery by reverse end-side anastomosis. At 4 weeks after surgery, the pathology of the specimens, CD68 immunohistochemistry, in situ β-galactosidase staining were obtained. The expression of CGRP gene was detected by reverse transcription-polymerase chain reaction (RT-PCR). Monocyte chemoattractant protein-1(MCP-1), tumour necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and matrix metalloproteinase-9 (MMP-9) were detected by real-time polymerase chain reaction (real-time PCR). Results The CGRP and LacZ gene expression was positive at postoperative 4 weeks. The intima/media ratio was significantly inhibited in the experimental group. Macrophage infiltration and expression of inflammatory mediators including MCP-1, TNF-α, iNOS and MMP-9 were also significantly inhibited in the experimental group. Conclusion Transfection of AAV2/1-CGRP inhibits inflammatory mediator expression, macrophage infiltration and neointimal hyperplasia in experimental vein graft disease.
【Abstract】ObjectiveSome studies have demonstrated that recombinant adenoviruses are efficient vectors for gene transfer to the venous wall and AdCMV.tk encoded thymidine kinase can be used to reduce restenosis. In this study AdCMV.tk was apply to human vein smooth muscle cells (SMC) and organ cultured saphenous veins to study its effects on proliferation of SMCs and reduction of intimal hyperplasia. MethodsThe adenovirus vector transferred tk gene and mark gene lacZ to the SMC of human saphenous veins and organ cultured vein segments. Various concentrations ganciclovir (GCV) were contained in culture media. The efficiency of gene transfer was studied by using Xgal staining. The proliferation of SMC was monitored by the method of trypan blue exclusion. The bystander effect was observed by mixed cell culture. After vein segments treated by AdCMV.tk+GCV and cultured for 14 days, HE and VG staining were carried out and intimal thickness was analysis by computer image system. ResultsAdenovirus vector could infect saphenous vein SMC efficiently both in cultured SMCs and organ cultured vein segments. Gene expression sustained 14 d at least. The inhibition of SMCs proliferation in vitro was a positive correlation in GCV concentrations and the levels of tk expression. The proliferation of SMCs transfectered lacZ wasn’t restrained by GCV (P<0.05). In mixed cell experiment there was at least 55% reduction in total cell number when as few as 10% of the cells express tk. Assessment of this “suicide gene strategy” in saphenous vein organ culture model demonstrated that veins treated with AdCMV.tk+GCV had a significant reduction at 14 days in the intimal thickness compared to control group (P<0.01). ConclusionThe results suggest that adenovirusmediated gene transfer of tk along with GCV administration may be a useful strategy to treat the proliferation of intimal hyperplasia of transplanting saphenous veins. Bystander effects are amplified by AdCMV.tk/GCV gene therapy system.