Objective To observe the expression and distribution of transforming growth factor-β1 (TGF-β1) in the healing process of bile duct and discuss its function and significance in the process of benign biliary stricture formation. Methods An injury to bile duct of dog was made and then repaired. The expression and distribution of TGF-β1 in the tissue at different time of the healing process were studied after operation with immunohistochemical SP staining. Results TGF-β1 staining was observed in the granulation tissue, fibroblasts and endothelial cells of blood vessels. High expression of TGF-β1 was observed in the healing process lasting for a long time. Conclusion The high expression of TGF-β1 is related closely with the fibroblast proliferating activity, extracellular matrix overdeposition and scar proliferation in the healing process of bile duct.
Objective To study the influence of transforming growth factor-β1(TGF-β1), dentin non-collagen proteins(dNCPs) and their complexon tissue engineering pulp system. Methods Collagen I and dentin powder were used to construct the system of pulp cells in 3dimensional culture, dentin powder was added in the gel. The tissue engineering pulp were divided TGF-β1 group, dNCPs group, TGF-β1/dNCPsgroup and control group.After3, 6 and 14 days, the appearance and the differentiation of pulp cells were observed by HE staining and immunohistochemical staining -respectively. Results Collagen I could form netted collagen gel construction. Growing condition of pulp cells in gel was similar to that of pulp cells in vivo. After the TGF-β1 and dNCPswere added, the pulp cells had some characteristics of odontoblasts and had unilateral cell process after culture 6 days. Pulp cells arranged with parallel columnar and form dentin-pulp-like complex after 14 days. Immunohistochemical staining showed dentin salivary protein(DSP) began to express in some cells.The number of positive cell was most in the TGF-β1 group. No positive cells were detected in the control group. Conclusion The transforming growth factor-β1 and noncollagen proteins can stimulate the pulp cells to transform into odontoblasts to some extent, which promote the formation of tissue engineering pulp.
Objective To investigate the expression of vascular endothelial growth factor-A (VEGF-A) and the phenotypic transition after the activation of fibroblasts by the supernatant of cultured tumor cells.Methods The growth tendency of fibroblasts was tested by the MTT assay.The expressions of alpha-smooth muscle actin (α-SMA) and VEGF-A mRNA were tested by RT-PCR.The expressions of α-SMA and VEGF-A protein were tested by immunohistochemistry and Western blot.Results The MTT assay indicated that the conditional medium which contained tumor cells supernatant could obviously promote the growth of the fibroblasts. RT-PCR and Western blot manifested that α-SMA expressed by the fibroblasts which cultured by normal medium reached its peak on day 5,then decreased to a low level on day 7.When the medium contained 2 ng/ml transforming growth factor-β1 (TGF-β1),the fibroblasts could steadily express more α-SMA.But the above two mediums could not make the fibroblasts express the VEGF-A. When using the conditional medium,the α-SMA peak advanced on the third day and maintained at a high level,so as the expression of the VEGF-A.Conclusions The results suggested that fibroblasts can be activated to be myofibroblasts when using the conditional medium.The best activation time of the fibroblasts is consistent with the time of the VEGF-A expression at the highest level by the activated fibroblasts.The fibroblasts which activated at the best time are expected to become a kind of cells which can be used for promoting revascularization.
Objective To study the inhibitory effects of curcumin on bleomycin-induced pulmonary fibrosis in rats at the fibrosing stage and explore its possible mechanism.Methods 96 male SD rats were randomly divided into a normal control group,a fibrosis model group,a fibrosis model treated with prednisone group and a fibrosis model treated with curcumin group.Pulmonary fibrosis were induced by instilled bleomycin through tracheal.From day 15 after bleomycin administration,the curcumin group and prednisone group were given curcumin(300 mg/kg) or prednisone(5 mg/kg) per day by intragastric administration,respectively.The normal control group and fibrosis model group were given 1% sodium carboxymethyl cellulose(10 mL/kg) as control.Six rats of each group were randomly sacrificed on day 21,28,42 and 56 after bleomycin administration,respectively.The histological changes of the lung were evaluated by HE and Masson’s trichrome staining.Lung expressions of transforming growth factor-β1(TGF-β1) and hydroxyproline were assessed by immuno-histochemistry and digestion method,respectively.Results Pulmonary fibrosis and hydroxyproline level in the curcumin group were significantly reduced as compared with those in the model group on day 42 and 56.The expession of TGF-β1 in the curcumin group was significantly lower than that in the model group on day 28,42 and 56,and was not significantly different from the normal group on day 56.Conclusion Curcumin could alleviate bleomycin-induced pulmonary fibrosis in rats at the fibrosing stage by inhibiting the expressions of TGF-β1.
OBJECTIVE: To explore the expression of alpha-smooth muscle actin (alpha-SMA) induced by transforming growth factor beta 1 (TGF-beta 1). METHODS: Five samples of hypertrophic scars and three samples of normal mature scars were collected as the experimental and control groups respectively. The fibroblasts were isolated from scars, and cultured in 2-dimension or 3-dimension culture system. The immunohistochemical staining method of LSAB were used to investigate the expression of alpha-SMA in fibroblasts in the different concentration of TGF-beta 1. RESULTS: The expression of alpha-SMA in 3-dimension culture system were markedly lower than those in 2-dimension culture system with respect to the fibroblasts in the experimental group. The expression of alpha-SMA in fibroblasts were different in response to various TGF-beta 1 concentration, it was more effective at the concentration of 5 ng/ml. The expression of alpha-SMA in the fibroblasts from hypertrophic scars seemed to be more sensitive to TGF-beta 1 compared to that of the normal mature scars. CONCLUSION: There are concentration-dependent in the expression of alpha-SMA induced by TGF-beta 1 in scar fibroblasts in vitro. The biological characteristics of the fibroblasts from hypertrophic scars and normal mature scars and their sensitivity to the inducement of TGF-beta 1 were different. The inducement of TGF-beta 1 may be depressed by extracellular matrix components and that may decrease the expression of alpha-SMA.
Objective To investigate the effects of adenovirus-mediated melanoma differentiation-associated gene-7 (mda-7)/IL-24 and/or adriamycin (ADM) on transplanted human hepatoma in nude mice and to explore a new way for hepatoma gene therapy combined with chemotherapy. Methods The recombinant adenovirus vector carrying Ad.mda-7 was constructed; Ad.mda-7 and/or ADM were injected into the tumor-bearing mice. Their effects on the growth of the tumor and the survival time of the mice were observed. The expressions of VEGF and TGF-β1 were detected by an immunohistochemistry method. Results Ad.mda-7 was constructed and expressed in vivo successfully. Compared with other three groups 〔control group (43.4±1.67) d, ADM group (64.2±4.14) d, Ad.mda-7 group (61.4±1.67) d〕, the mice treated with Ad.mda-7 combined with ADM had longer average survival time 〔(83.8±4.82) d, P<0.01〕; the average size of tumor treated with Ad.mda-7 combined with ADM diminished significantly compared with that treated with ADM or Ad.mda-7 separately (P<0.01). VEGF and TGF-β1 expressions of Ad.mda-7 group were (56.2±7.7)%, (35.2±4.5)%, respectively, and were lower than those in ADM group (VEGF: P<0.05; TGF-β1: P<0.01). VEGF expression of Ad.mda-7+ADM group was (37.3±5.0)%, and was significantly lower than that in other three groups (P<0.01). TGF-β1 expression of Ad.mda-7+ADM group was (31.2±3.1)% and significantly lower than that in control group and ADM group (P<0.01), however, there was no significant difference compared with Ad.mda-7 group (Pgt;0.05). Conclusion Ad.mda-7 combined with ADM has b antitumor potency and synergistic effects and suppresses the growth of human HCC xenograft in nude mice, possibly by inducing the apoptosis of hepatoma cell lines and suppressing tumor angiogenesis.
Objective To investigate the effect of transforming growth factor-β1 (TGF-β1) gene transfer on the biological characteristics of osteoblasts. Methods The expression of TGF-β1 in the transfected osteoblasts was detected by in situ hybridization and assay of TGF-β1 activity in the supernatant (minklung epithelium cell growth -inhibition test). The effects of gene transfer andsupernatant of the transfected osteoblasts on the proliferation and alkaline phosphatase(ALP) activity of osteoblasts were detected by 3 H-TdR and MTT. Results The results of in situ hybridization analysis suggested that the osteoblasts transfected by TGF-β1 gene could express TGF-β1 obviously. The complex medium, which was the mixture of serum-free DMEM and the activated supernatant according to 1∶1, 1∶2, 1∶4, could inhibit growth of Mv-1-Lu evidently and the ratios ofinhibition were 16.3%, 22.7%, 28.2% respectively. TGF-β1 gene transfer hadno effect on the biological characteristics of osteoblasts, but the activated supernatant of transfected osteoblasts stimulated proliferation and inhibited ALPactivity of osteoblasts. Conclusion TGF-β1 gene transfer promotes the expression of TGF-β1 and the biological characteristics of trasfected osteoblasts are stable, which is helpful for gene therapy of bone defects in vivo.
【Abstract】Objective To investigate the apoptosis induced by TGF-β1 in human hepatic carcinoma cell lines and its relationship with p53 gene and Smad. Methods Three human hepatic carcinoma cell lines which involving in various status of the p53 gene were used in this study. TGF-β1-induced apoptosis in hepatic carcinoma cell lines was measured by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. To study the mechanism of TGF-β1-induced apoptosis, these cell lines were transfected with a TGF-β1-inducible luciferase reporter plasmid containing Smad 4 binding elements (SBE) and luciferase gene using Lipofectamine 2000, then treated with TGF-β1, relative luciferase activity was assayed. Results Of three cell lines studied with TUNEL assay, TGF-β1 induced apoptosis was observed in HepG2 cells (wild type p53). Huh-7 (mutant p53) and Hep3B (deleted p53) cell lines showed less apoptosis. Luciferase activity assay indicated that the response to TGF-β1 induction in HepG2 cells was increased dramatically but was not significant in Huh-7 and Hep3B cell lines. Conclusion HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh7 cell lines. Smad 4 is a central mediator of the TGF-β1 signal transduction pathway.
Objective To explore the effectiveness of the transforming growth factor-β1(TGF-β1) and tumor necrosis factor-α(TNF-α) inducing human bronchial epithelial(HBE) cells to optimize epithelia-mesenchymal transformation(EMT) model. Methods Blank control, TGF-β1 10 ng/ml, TNF-α 10 ng/ml, TGF-β1 10 ng/ml+TNF-α 10 ng/ml induced human epithelial cells for 24 hours. Then the change of morphological alteration were observed by applying CCK8, cells migration assay and Western blot technique. Results When TGF-β1 plus TNF-α induced human epithelial cells for 24 hours, most of HBE cells traits changed including morphological alteration from cobblestone to fusiform, connection between cells vanishing, intercellular space broadening. In the experiments of checking cell migration capacity by the vitro scratch test, the group spacing was 420.06±10.38 μm in the blank control group, 499.86±34.00 μm in the TGF-β1 10 ng/ml group, 514.93±10.56 μm in the TNF-α 10 ng/ml group, 569.68±33.58 μm in the TGF-β1 10 ng/ml+TNF-α10 ng/ml group. TGF-β1 cooperated with TNF-α led to scratch spacing narrowing significantly. Western blot analysis showed that expression of E-cadherin and Vimentin varied significantly in the TGF-β1+TNF-α group. Conclusion Inducing human bronchial epithelial cell by TGF-β1 cooperated with TNF-α optimizes EMT model.
Objective To examine the effects of TGF-β1 on epithelial-myofibroblast transition ( EMT) of A549 cells and its relationship with extracellular regulating kinase1/2 ( ERK1/2) signaling system. Methods Cultured A549 cells were divided into one negative control group and four groups incubated with TGF-β1 for 48 hours at different concentration ( 0.05, 0. 5, 5, 10 μg/L, respectively) . The protein expressions of E-cadherin, α-smooth muscle actin ( α-SMA) , vimentin and fibronectin were assessed by indirect immunofluorescence and Western blot. In the other experiment, cultured A549 cells were incubated with TGF-β1 for different time. The protein and mRNA expressions of E-cadherin and α-SMA were assessed by Western blot and RT-PCR. The protein expressions of vimentin, fibronectin, ERK1 /2, and p-ERK1 /2 were detected by Western blot. Results By indirect immunofluorescence, Western blot, and RT-PCR analysis, E-cadherin expression significantly decreased and α-SMA expression significantly increased in A549 cells treated with TGF-β1 compared with negative controls in a time- and concentrationdependent manner ( Plt;0.05 ) . Vimentin and fibronectin protein expressions significantly increased simultaneously ( Plt;0.05) . The concentration of 5 ng/mL of TGF-β1 was most effective. The ratio of p-ERK1 /2 and ERK1/2 was significantly increased in the TGF-β1 treated cells in a time-dependent manner ( P lt;0. 05) . Conclusions TGF-β1 can induced EMT in A549 cells in vitro in a time- and concentrationdependant manner. This effect may involve in upregulation of ERK1/2 signaling system.