west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Three-dimensional printing" 50 results
  • MECHANICAL PROPERTIES OF POLYLACTIC ACID/β-TRICALCIUM PHOSPHATE COMPOSITE SCAFFOLD WITH DOUBLE CHANNELS BASED ON THREE-DIMENSIONAL PRINTING TECHNIQUE

    ObjectiveTo improve the poor mechanical strength of porous ceramic scaffold, an integrated method based on three-dimensional (3-D) printing technique is developed to incorporate the controlled double-channel porous structure into the polylactic acid/β-tricalcium phosphate (PLA/β-TCP) reinforced composite scaffolds (double-channel composite scaffold) to improve their tissue regeneration capability and the mechanical properties. MethodsThe designed double-channel structure inside the ceramic scaffold consisted of both primary and secondary micropipes, which parallel but un-connected. The set of primary channels was used for cell ingrowth, while the set of secondary channels was used for the PLA perfusion. Integration technology of 3-D printing technique and gel-casting was firstly used to fabricate the double-channel ceramic scaffolds. PLA/β-TCP composite scaffolds were obtained by the polymer gravity perfusion process to pour PLA solution into the double-channel ceramic scaffolds through the secondary channel set. Microscope, porosity, and mechanical experiments for the standard samples were used to evaluate the composite properties. The ceramic scaffold with only the primary channel (single-channel scaffold) was also prepared as a control. ResultsMorphology observation results showed that there was no PLA inside the primary channels of the double-channel composite scaffolds but a dense interface layer between PLA and β-TCP obviously formed on the inner wall of the secondary channels by the PLA penetration during the perfusion process. Finite element simulation found that the compressive strength of the double-channel composite scaffold was less than that of the single-channel scaffold; however, mechanical tests found that the maximum compressive strength of the double-channel composite scaffold[(21.25±1.15) MPa] was higher than that of the single-channel scaffold[(9.76±0.64) MPa]. ConclusionThe double-channel composite scaffolds fabricated by 3-D printing technique have controlled complex micropipes and can significantly enhance mechanical properties, which is a promising strategy to solve the contradiction of strength and high-porosity of the ceramic scaffolds for the bone tissue engineering application.

    Release date: Export PDF Favorites Scan
  • Gait analysis after total knee arthroplasty assisted by three-dimensional printing navigation template

    ObjectiveTo explore the gait trajectory characteristics of patients after total knee arthroplasty (TKA) assisted by three-dimensional (3D) printing navigation template.MethodsTwenty female patients (20 knees) with knee osteoarthritis who were treated with TKA assisted by 3D printing navigation template between February 2017 and February 2018 were selected as the 3D printing group. The patients were 50-69 years old, with an average age of 57.2 years. The disease duration was 4-7 years, with an average of 5.6 years. The osteoarthritis was classified as Kellgren-Lawrence Ⅲ level in 5 cases and Ⅳ level in 15 cases. The preoperative hip-knee-ankle angle (HKA) was (170.8±5.6)°. All patients were varus deformity. According to age and affected side, 20 healthy female volunteers were selected as the control group. The volunteers were 51-70 years old, with an average age of 56.7 years. Preoperative HKA was (178.8±0.6)°. There was significant difference in HKA between the two groups (P>0.05). The HKA, Western Ontario and McMaster University Osteoarthritis Index (WOMAC), and visual analogue scale (VAS) scores of the 3D printing group before and after operation were compared. At 6 months after operation, the gait trajectory characteristics of 3D printing group and control group were analyzed by Vicon gait capture system. The kinematics parameters included velocity, cadence, stride length, maximum knee flexion angle (stance), minimum knee flexion angle (stance), maximum knee flexion angle (swing), mean hip rotation angle (stance), mean ankle rotation angle (stance).ResultsThe incisions of 3D printing group healed by first intention, with no complications. All patients were followed up 7-12 months (mean, 9.0 months). The WOMAC and VAS scores at 6 months after operation were significant lower than those before operation (P<0.05). The HKA was (178.8±0.8)° at 4 weeks after operation and the difference was significant when compared with that before operation (t=39.203, P=0.000). The position of the prosthesis was good. The femoral posterior condyle osteotomy line, surgical transepicondylar axis, and patella transverse line were parallel, varus deformity was corrected, and lower limb alignment was restored to neutral position. Gait analysis at 6 months after operation showed that the differences in all kinematics parameters between the two groups were significant (P<0.05).ConclusionAssisted by 3D printing navigation template, TKA can alleviate pain symptoms and correct deformity, with satisfactory early effectiveness. Compared with healthy people, the early postoperative gait of the patients were characterized by decreasing velocity, cadence, stride length, knee flexion range, and increasing compensatory hip and ankle rotation range.

    Release date:2019-07-23 09:50 Export PDF Favorites Scan
  • Three-dimensional printed 316L stainless steel cardiovascular stent’s electrolytic polishing and its mechanical properties

    The interventional therapy of vascular stent implantation is a popular treatment method for cardiovascular stenosis and blockage. However, traditional stent manufacturing methods such as laser cutting are complex and cannot easily manufacture complex structures such as bifurcated stents, while three-dimensional (3D) printing technology provides a new method for manufacturing stents with complex structure and personalized designs. In this paper, a cardiovascular stent was designed, and printed using selective laser melting technology and 316L stainless steel powder of 0−10 µm size. Electrolytic polishing was performed to improve the surface quality of the printed vascular stent, and the expansion behavior of the polished stent was assessed by balloon inflation. The results showed that the newly designed cardiovascular stent could be manufactured by 3D printing technology. Electrolytic polishing removed the attached powder and reduced the surface roughness Ra from 1.36 µm to 0.82 µm. The axial shortening rate of the polished bracket was 4.23% when the outside diameter was expanded from 2.42 mm to 3.63 mm under the pressure of the balloon, and the radial rebound rate was 2.48% after unloading. The radial force of polished stent was 8.32 N. The 3D printed vascular stent can remove the surface powder through electrolytic polishing to improve the surface quality, and show good dilatation performance and radial support performance, which provides a reference for the practical application of 3D printed vascular stent.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • Effect of three-dimensional printing guide plate on improving femoral rotational alignment and patellar tracking in total knee arthroplasty

    ObjectiveTo investigate the effect of three-dimensional (3D) printing guide plate on improving femoral rotational alignment and patellar tracking in total knee arthroplasty (TKA).MethodsBetween January 2018 and October 2018, 60 patients (60 knees) with advanced knee osteoarthritis who received TKA and met the selection criteria were selected as the study subjects. Patients were randomly divided into two groups according to the random number table method, with 30 patients in each group. The TKA was done with the help of 3D printing guide plate in the guide group and following traditional procedure in the control group. There was no significant difference in gender, age, disease duration, side, and preoperative hip-knee-ankle angle (HKA), posterior condylar angle (PCA), patella transverse axis-femoral transepicondylar axis angle (PFA), Hospital for Special Surgery (HSS) score, and American Knee Society (AKS) score (P>0.05).ResultsAll incisions healed by first intention and no complications related to the operation occurred. All patients were followed up 10-12 months, with an average of 11 months. HSS score and AKS score of the two groups at 6 months after operation were significantly higher than those before operation (P<0.05), but there was no significant difference between the two groups (P>0.05). Postoperative X-ray films showed that the prosthesis was in good position, and no prosthesis loosening or sinking occurred during follow-up. HKA, PCA, and PFA significantly improved in the two groups at 10 months after operation compared with those before operation (P<0.05). There was no significant difference in HKA at 10 months between the two groups (t=1.031, P=0.307). PCA and PFA in the guide group were smaller than those in the control group (P<0.05).ConclusionApplication of 3D printing guide plate in TKA can not only correct the deformity of the knee joint and alleviate the pain symptoms, but also achieve the goal of the accurate femoral rotation alignment and good patellar tracking.

    Release date:2020-04-15 09:18 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING

    ObjectiveTo summarize the research progress of several three-dimensional (3-D) printing scaffold materials in bone tissue engineering. MethodThe recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized. ResultsCompared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention. ConclusionsThe development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.

    Release date: Export PDF Favorites Scan
  • Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells

    ObjectiveTo prepare dopamine modified and cartilage derived morphogenetic protein 1 (CDMP1) laden polycaprolactone-hydroxyapatite (PCL-HA) composite scaffolds by three-dimensional (3D) printing and evaluate the effect of 3D scaffolds on in vitro chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).MethodsA dimensional porous PCL-HA scaffold was fabricated by 3D printing. Dopamine was used to modify the surface of PCL-HA and then CDMP-1 was loaded into scaffolds. The surface microstructure was observed by scanning electron microscope (SEM) and porosity and water static contact angle were also detected. The cytological experiment in vitro were randomly divided into 3 groups: group A (PCL-HA scaffolds), group B (dopamine modified PCL-HA scaffolds), and group C (dopamine modified and CDMP-1 laden PCL-HA scaffolds). The hBMSCs were seeded into three scaffolds, in chondrogenic culture conditions, the cell adhesive rate, the cell proliferation (MTT assay), and cell activity (Live-Dead staining) were analyzed; and the gene expressions of collagen type Ⅱ and Aggrecan were detected by real-time fluorescent quantitative PCR.ResultsThe scaffolds in 3 groups were all showed a cross-linked and pore interconnected with pore size of 400–500 μm, porosity of 56%, and fiber orientation of 0°/90°. For dopamine modification, the scaffolds in groups B and C were dark brown while in group A was white. Similarly, water static contact angle was from 76° of group A to 0° of groups B and C. After cultured for 24 hours, the cell adhesion rate of groups A, B, and C was 34.3%±3.5%, 48.3%±1.5%, and 57.4%±2.5% respectively, showing significant differences between groups (P<0.05). Live/Dead staining showed good cell activity of cells in 3 groups. MTT test showed that hBMSCs proliferated well in 3 groups and the absorbance (A) value was increased with time. The A value in group C was significantly higher than that in groups B and A, and in group B than in group A after cultured for 4, 7, 14, and 21 days, all showing significant differences (P<0.05). The mRNA relative expression of collagen type Ⅱ and Aggrecan increased gradually with time in 3 groups. The mRNA relative expression of collagen type Ⅱafter cultured for 7, 14, and 21 days, and the mRNA relative expression of Aggrecan after cultured for 14 and 21 days in group C were significantly higher than those in groups A and B, and in group B than in group A, all showing significant differences (P<0.05).ConclusionCo-culture of dopamine modified and CDMP1 laden PCL-HA scaffolds and hBMSCs in vitro can promote hBMSCs’ adhesion, proliferation, and chondrogenic differentiation.

    Release date:2018-02-07 03:21 Export PDF Favorites Scan
  • Application of three-dimensional printing technology in treatment of limb bone tumors

    With the developing of three-dimensional (3D) printing technology, it is widely used in the treatment of bone tumors in the clinical orthopedics. Because of the great individual differences in the location of bone tumor, resection and reconstruction are difficult. Based on 3D printing technology, the 3D models can be prepared to show the anatomical part of the disease, so that the surgeons can create a patient-specific operational plans based on better understand the local conditions. At the same time, preoperative simulation can also be carried out for complex operations and patient-specific prostheses can be further designed and prepared according to the location and size of tumor, which may have more advantages in adaptability. In this paper, the domestic and international research progress of 3D printing technology in the treatment of limb bone tumors in recent years were reviewed and summarized.

    Release date:2022-08-04 04:33 Export PDF Favorites Scan
  • Effectiveness of total knee arthroplasty using three-dimensional printing technology for knee osteoarthritis accompanied with extra-articular deformity

    Objective To evaluate the effectiveness of total knee arthroplasty (TKA) using three-dimensional (3D) printing technology for knee osteoarthritis (KOA) accompanied with extra-articular deformity. Methods Between March 2013 and December 2015, 15 patients (18 knees) with extra-articular deformity and KOA underwent TKA. There were 6 males (6 knees) and 9 females (12 knees), aged 55-70 years (mean, 60.2 years). The mean disease duration was 10.8 years (range, 7-15 years). The unilateral knee was involved in 12 cases and bilateral knees in 3 cases. The clinical score was 57.44±1.06 and the functional score was 60.88±1.26 of Knee Society Score (KSS). The range of motion of the knee joint was (72.22±0.18)°. The deviation of mechanical axis of lower limb was (18.89±0.92)° preoperatively. There were 8 cases (10 knees) with extra-articular femoral deformity, 5 cases (5 knees) with extra-articular tibial deformity, and 2 cases (3 knees) with extra-articular femoral and tibial deformities. Bone models and the navigation templates were printed and the operation plans were designed using 3D printing technology. The right knee joint prostheses were chosen. Results The operation time was 65-100 minutes (mean, 75.6 minutes). The bleeding volume was 50-150 mL (mean, 90.2 mL). There was no poor incision healing, infection, or deep venous thrombosis after operation. All patients were followed up 12- 30 months (mean, 22 months). Prostheses were located in the right place, and no sign of loosening or subsidence was observed by X-ray examination. At last follow-up, the deviation of mechanical axis of lower limb was (2.00±0.29)°, showing significant difference when compared with preoperative one (t=13.120, P=0.007). The KSS clinical score was 87.50±0.88 and function score was 81.94±1.41, showing significant differences when compared with preoperative ones (t=27.553, P=0.000; t=35.551, P=0.000). The range of motion of knee was (101.94±1.42)°, showing significant difference when compared with preoperative one (t=31.633, P=0.000). Conclusion For KOA accompanied with extra-articular deformity, TKA using 3D printing technology has advantages such as individualized treatment, reducing the difficulty of operation, and achieving the satisfactory function.

    Release date:2017-08-03 03:46 Export PDF Favorites Scan
  • APPLICATION OF THREE-DIMENSIONAL PRINTING TECHNIQUE IN ARTIFICIAL BONE FABRICATION FOR BONE DEFECT AFTER MANDIBULAR ANGLE OSTECTOMY

    ObjectiveTo investigate the application of three-dimensional (3-D) printing technique combining with 3-D CT and computer aided-design technique in customized artificial bone fabrication, correcting mandibular asymmetry deformity after mandibular angle ostectomy. MethodsBetween April 2011 and June 2013, 23 female patients with mandibular asymmetry deformity after mandibular angle ostectomy were treated. The mean age was 27 years (range, 22-34 years). The disease duration of mandibular asymmetry deformity was 6-16 months (mean, 12 months). According to the CT data and individualized mandibular angle was simulated based on mirror theory, 3-D printed implants were fabricated as the standard reference for manufacturers to fabricated artificial bone graft, and then mandible repair operation was performed utilizing the customized artificial bone to improve mandibular asymmetry. ResultsThe operation time varied from 40 to 60 minutes (mean, 50 minutes). Primary healing of incisions was obtained in all patients; no infection, hematoma, and difficulty in opening mouth occurred. All 23 patients were followed up 3-10 months (mean, 6.7 months). After operation, all patients obtained satisfactory facial and mandibular symmetry. 3-D CT reconstructive examination results after 3 months of operation showed good integration of the artificial bone. Conclusion3-D printing technique combined with 3-D CT and computer aided design technique can be a viable alternative to the approach of maxillofacial defects repair after mandibular angle ostectomy, which provides a accurate and easy way.

    Release date: Export PDF Favorites Scan
  • Effectiveness of distal femoral osteotomy assisted by three-dimensional printing technology for correction of valgus knee with osteoarthritis

    Objective To evaluate the effectiveness of distal femoral osteotomy aided by three-dimensional (3D) printing cutting block for correction of vaglus knee with osteoarthritis. Methods Between January 2014 and January 2016, 12 patients (15 knees) with vaglus deformity and lateral osteoarhritis underwent medial closing wedge distal femoral osteotomy. There were 5 males and 7 females, aged 30-60 years (mean, 43.8 years). The mean disease duration was 6.6 years (range, 1–12 years). The unilateral knee was involved in 9 cases and bilateral knees in 3 cases. According to Koshino’s staging system, 1 knee was classified as stage I, 9 knees as stage II, and 5 knees as stage III. The X-ray films of bilateral lower extremities showed that the femorotibial angle (FTA) and anatomical lateral distal femoral angle (aLDFA) were (160.40±2.69)° and (64.20±2.11)° respectively. Mimics software was used to design and print the cutting block by 3D printing technique. During operation, the best location of distal femoral osteotomy was determined according to the cutting block. After osteotomy, internal fixation was performed using a steel plate and screws. Results All incisions healed primarily; no complication of infection or deep vein thrombosis was observed. All patients were followed up 6-18 month (mean, 12.2 months). At 6 months after operation, the hospital for special surgery (HSS) score for knee was significantly improved to 89.07±2.49 when compared with preoperative score (65.27±1.49,t=–28.31,P=0.00); the results were excellent in 10 knees, good in 4 knees, and fair in 1 knee with an excellent and good rate of 93.3%. The bony union time was 2.9-4.8 months (mean, 3.3 months). Bone delayed union occurred in 1 case (1 knee). The postoperative FTA and aLDFA were (174.00±1.41)° and (81.87±1.06)° respectively, showing significant differences when compared with preoperative ones (t=–18.26,P=0.00;t=–25.19,P=0.00). The percentage of medial tibial plateau in whole tibial plateau was 49.78%±0.59%, showing no significant difference when compared with intraoperative measurement (49.82%±0.77%,t=0.14,P=0.89). Conclusion 3D printing cutting block can greatly improve the accuracy of distal femoral osteotomy, and ensure better effectiveness for correction of vaglus knee with osteoarthritis.

    Release date:2017-03-13 01:37 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content