ObjectiveTo evaluate the application value of three-dimensional (3D) reconstruction in preoperative surgical diagnosis of new classification criteria for lung adenocarcinoma, which is helpful to develop a deep learning model of artificial intelligence in the auxiliary diagnosis and treatment of lung cancer.MethodsThe clinical data of 173 patients with ground-glass lung nodules with a diameter of ≤2 cm, who were admitted from October 2018 to June 2020 in our hospital were retrospectively analyzed. Among them, 55 were males and 118 were females with a median age of 61 (28-82) years. Pulmonary nodules in different parts of the same patient were treated as independent events, and a total of 181 subjects were included. According to the new classification criteria of pathological types, they were divided into pre-invasive lesions (atypical adenomatous hyperplasia and and adenocarcinoma in situ), minimally invasive adenocarcinoma and invasive adenocarcinoma. The relationship between 3D reconstruction parameters and different pathological subtypes of lung adenocarcinoma, and their diagnostic values were analyzed by multiplanar reconstruction and volume reconstruction techniques.ResultsIn different pathological types of lung adenocarcinoma, the diameter of lung nodules (P<0.001), average CT value (P<0.001), consolidation/tumor ratio (CTR, P<0.001), type of nodules (P<0.001), nodular morphology (P<0.001), pleural indenlation sign (P<0.001), air bronchogram sign (P=0.010), vascular access inside the nodule (P=0.005), TNM staging (P<0.001) were significantly different, while nodule growth sites were not (P=0.054). At the same time, it was also found that with the increased invasiveness of different pathological subtypes of lung adenocarcinoma, the proportion of dominant signs of each group gradually increased. Meanwhile, nodule diameter and the average CT value or CTR were independent risk factors for malignant degree of lung adenocarcinoma.ConclusionImaging signs of lung adenocarcinoma in 3D reconstruction, including nodule diameter, the average CT value, CTR, shape, type, vascular access conditions, air bronchogram sign, pleural indenlation sign, play an important role in the diagnosis of lung adenocarcinoma subtype and can provide guidance for personalized therapy to patients in clinics.
ObjectiveTo explore the value and role of post-processing techniques such as 3D reconstruction in the online education mode in neurosurgery undergraduate clinical probation teaching.MethodsA retrospective analysis method was used to collect 120 clinical 5-year medical students who were trained in neurosurgery at West China Hospital of Sichuan University from January 2019 to May 2020, including 40 students receiving traditional imaging materials offline (control group 1), 40 students being taught on image post-processing technology offline (control group 2), and 40 students being taught on-line image post-processing technology during the novel coronavirus epidemic (observational group). The students’ scores of departmental rotation examination and feedback survey results on teaching satisfaction were collected, and multiple comparison was conducted between the observational group and the two control groups respectively.ResultIn the control group 1, the control group 2, and the observational group, the theoretical test scores were 36.80±3.22, 38.17±2.61, and 38.97±2.79, respectively; the case analysis scores were 37.05±2.01, 38.40±2.62, and 39.25±2.88, respectively; the total scores were 73.85±5.06, 76.57±4.29, and 78.10±4.53, respectively; the scores of interest in teaching were 84.47±3.71, 86.05±2.87, and 86.82±2.60, respectively; the scores of mastery of knowledge were 82.85±4.39, 84.90±2.72, and 85.78±2.36, respectively; and the scores of overall satisfaction with teaching were 84.17±3.45, 85.97±2.64, and 86.37±2.59, respectively. The differences among the three groups were all statistically significant (P<0.05). The observational group differed significantly from the control group 1 in all the above scores (P<0.05), while did not differed from the control group 2 in any of the above scores (P>0.05).ConclusionsIn neurosurgery internship activities, the online application of image post-processing techniques such as 3D reconstruction will help students establish 3D spatial concepts, better understand the brain anatomy, and improve students’ academic performance and acceptance.
ObjectiveTo investigate the effectiveness of digital three-dimensional (3D) printing osteotomy guide plate assisted total knee arthroplasty (TKA) in treatment of knee osteoarthritis (KOA) patients with femoral internal implants. Methods The clinical data of 55 KOA patients who met the selection criteria between July 2021 and October 2023 were retrospectively analyzed. Among them, 26 cases combined with femoral implants were treated with digital 3D printing osteotomy guide plate assisted TKA (guide plate group), and 29 cases were treated with conventional TKA (control group). There was no significant difference in gender, age, body mass index, side, Kellgren-Lawrence classification, preoperative visual analogue scale (VAS) score, Hospital for Special Surgery (HSS) knee score, knee range of motion, and other baseline data between the two groups (P>0.05). The operation time, intraoperative blood loss, incision length, postoperative first ambulation time, surgical complications; VAS score, knee HSS score, knee range of motion before operation, at 1 week and 3 months after operation, and at last follow-up; distal femoral lateral angle, proximal tibial medial angle, hip-knee-ankle angle and other imaging indicators at last follow-up were recorded and compared between the two groups. ResultsThe operation time, incision length, intraoperative blood loss, and postoperative first ambulation time in the guide plate group were significantly lower than those in the control group (P<0.05). In the control group, there were 1 case of incision rupture and bleeding and 1 case of lower limb intermuscular venous thrombosis, which was cured after symptomatic treatment. There was no complication such as neurovascular injury, incision infection, or knee prosthesis loosening in both groups. Patients in both groups were followed up 12-26 months, with an average of 16.25 months. The VAS score, HSS score, and knee range of motion improved at each time point after operation in both groups, and further improved with time after operation, the differences were significant (P<0.05). The above indicators in the guide plate group were significantly better than those in the control group at 1 week and 3 months after operation (P<0.05), and there was no significant difference between the two groups at last follow-up (P>0.05). At last follow-up, the distal femoral lateral angle, the proximal tibial medial angle, and the hip-knee-ankle angle in the guide plate group were significantly better than those in the control group (P<0.05). Conclusion The application of digital 3D printing osteotomy guide plate assisted TKA in the treatment of KOA patients with femoral implants can simplify the surgical procedures, overcome limitations of conventional osteotomy guides, reduce surgical trauma, achieve individualized and precise osteotomy, and effectively restore lower limb alignment and knee joint function.
Objective To establish the three diamension-model and to observe the contribution of endothelial progenitor cell (EPC) in the angiogenesis and its biological features. MethodsEPC was obtained from the rats’ peripheral blood. Its cultivation and amplification in vitro were observed, and the function of the cultural EPC in vitro was detected. The three diamension-model was established and analyzed. ResultsEPC was obtained from the peripheral blood successfully. The proliferation of the EPC which induced with VEGF(experimental group) was better than that without VEGF (control group) at every different phase (P<0.01). It was found that EPC grew into collagen-material from up and down in the three diamension-model, and its pullulation and infiltration into the collagen were seen on day 1 after cultivation. With the time flying, there were branch-like constructions which were vertical to the undersurface of collagen and interlaced to net each other. It showed that in experimental group the EPC grew fast, its infiltration and pullulation also were fast, the branch-like construction was thick. But in control group, the EPC grew slowly, infiltration and pullulation were slow, the branch-like construction was tiny and the depth of infiltration into collagen was superficial. The number of new vessels in experimental group was larger than that in the control group at every different phase (P<0.01). ConclusionRat tail collagen can induce EPC involved in immigration, proliferation and pullulation in angiogenesis. The three-diamension model of EPC can be used to angiogenesis research. VEGF can mobilize and induce EPC to promote the angiogenesis.
Objective To evaluate the application value of spiral CT virtual endoscopy and three dimensional imaging in fiberoptic bronchoscopic balloon dilation in patients with benign tracheobronchial stenosis. Methods Thirty-three cases of benign tracheobronchial stenosis from June 2004 to November 2008 were checked by spiral CT with airway tracheobronchial reconstruction. For the patients with indications, balloon dilatation was performed under fiberoptic bronchoscope. The three-dimensional reconstruction images were compared with the findings under bronchoscopy. And the preoperative and postoperative three-dimensional reconstruction images were compared for airway diameter. Results Three cases were found stenosis of middle lobe by CT virtual endoscopy and did not undergo balloon dilatation. The remaining 30 cases were confirmed by bronchoscopy findings similar to the images by tracheobronchial reconstruction with CT, with consistent rate of 100% . Immediate postoperative three-dimensional CTreconstruction of tracheal bronchus revealed that diameter of stenotic bronchus increased from ( 2. 7 ±1. 3) mm to ( 6. 9 ±1. 6) mmafter operation. Conclusion Multislice spiral CT virtual endoscopy is helpful in fiberoptic bronchoscopic balloon dilation in patients with benign tracheobronchial stenosis and postoperative follow-up.
ObjectiveTo assess the feasibility of 3D digital lung software used in preoperative planning of patients with multiple pulmonary nodules and poor pulmonary function. MethodsFive patients with multiple pulmonary nodules in the left lung, meanwhile with a history of single lung lobectomy in the right lung were included in our hospital between June and December 2015. There were 4 males and 1 female at an average age of 50.4±2.6 years. A 320-slice volumetric CT scanner was used to the CT angiography (CTA) of the pulmonary artery. The data of CT images were imported into the 3D digital lung software that was researched and developed by Xiamen QiangBen Science and Technology Company. The 3D reconstruction of digital virtual lung was completed by this software based on those data. At the same time the soft-ware completed the automatic segmentation of the lung based on the pulmonary artery system and the 3D reconstruction of the pulmonary nodules. The 3D digital lung software calculated the volume proportion of the intended removal (segm-ental lesions) to the whole lung, estimated the effect of surgery on forced expired volume in one second (FEV1), and the patient's tolerance ability to surgery. After the preoperative planning, the patients received multiple pulmonary segmental/subsegmental resection under the general anesthesia by video-assisted thoracoscopic surgery (VATS). ResultsThe 3d reconstruction of the pulmonary arteries reached 5 levels in 5 patients. And the software automatically identified out the lung segment/subsegment to show the lung nodules of lung segment/subsegment. The preselection lung volume of 5 patients accounted for 14.00%-27.00% of total lung volume. The software estimated FEV1 as 1.16-1.46 L which can tolerate the operation. The 5 patients were successfully performed surgery of multiple pulmonary segmental/subsegmental resection under the general anesthesia by VATS. The software located lung nodules from the resection of pulmonary segments during operation immediately. Then we sent them to the rapid pathological examination for diagnosis. After operation, the patients recovered well, and had no respiratory insufficiency. Hospitalization day was 4 days. ConclusionThe 3D digital pulmonary software can not only automatically identify the pulmonary segments, precisely position the pulmonary nodule, show the relationship among the target pulmonary segments artery, vein, bronchus and the surroun-ding artery, vein, and bronchus, but also calculate the volume of the pulmonary segments, estimate the impact of the pulmonary segmentectomy on the FEV1. It is useful for precise evaluation of the tolerant capacity of multiple pulmonary nodules in patients with unstaged multiple pulmonary segments.
Objective To explore some operative problems of correcting paralytic scoliosis(PS) by using vertebral pedicle screwsrods system. Methods From May 2000 to May 2005, 18 patients with PS were corrected by screwsrods system which were made of titanium alloy.There were 10 males and 8 females, aging from 11 to 26 years. The primary disease included poliomyelitis in 13 patients and myelodysplasia (MS) in 5 patients (2 cases for second correction) with scoliosis of an average 85° Cobb angle (55-125°). The pelvic obliquity was found in all patients with an average 24° angle (355°).Of the 18 patients,3 cases were given perioperative halo-pelvic traction, 2 cases were given vertebral wedge osteotomy and correction and fixation, the other patients were purely underwent the treatment of pedicle screwrods system implants. Fusion segment at operation ranged from 6 to 15 sections, applied screws the most was 16,the fewest was 6. Results There were no wound infections and neurologic complications, all wounds healed by the first intention. Allscoliosis obtained obvious correction (P<0.001), the correction rate averaged 52.95% (44%-81%); the majority of lumbar kyphosis and pelvic obliquity were apparently corrected. The average clinical follow-up (16 cases) was 21 months(6-36 months),there was no implants failure. One patient with MS had a worse Cobb magnitude, the other patients had no curve progression (P>0.05). Conclusion The use of vertebral pedicle screwsrods fixation to multiple vertebral bodys and short segment fusion for PS, the treatment method is reliable and the outcome is satisfactory. While performing the correcting operative procedures, the spinal, pelvic and lower extremity deformities and functions should be all considered as a whole.
ObjectiveTo study the feasibility of preparation of the individualized femoral prosthesis through computer assisted design and electron beammelting rapid prototyping (EBM-RP) metal three-dimensional (3D) printing technology. MethodsOne adult male left femur specimen was used for scanning with 64-slice spiral CT; tomographic image data were imported into Mimics15.0 software to reconstruct femoral 3D model, then the 3D model of individualized femoral prosthesis was designed through UG8.0 software. Finally the 3D model data were imported into EBM-RP metal 3D printer to print the individualized sleeve. ResultsAccording to the 3D model of individualized prosthesis, customized sleeve was successfully prepared through the EBM-RP metal 3D printing technology, assembled with the standard handle component of SR modular femoral prosthesis to make the individualized femoral prosthesis. ConclusionCustomized femoral prosthesis accurately matching with metaphyseal cavity can be designed through the thin slice CT scanning and computer assisted design technology. Titanium alloy personalized prosthesis with complex 3D shape, pore surface, and good matching with metaphyseal cavity can be manufactured by the technology of EBM-RP metal 3D printing, and the technology has convenient, rapid, and accurate advantages.
ObjectiveTo study the value of transperineal three-dimensional ultrasound imaging in the diagnosis of pelvic organ prolapse (POP). MethodsFifty-two female patients undergoing transperineal three-dimensional ultrasound imaging between December 2011 and May 2013 were chosen for our study. Thirty-two of them with POP were designated into the observation group, and the other 20 patients with common gynecological diseases were regarded as the control group. Both the two groups of patients underwent transperineal three-dimensional ultrasound imaging in their resting state, action state (Valsalva deep inspiration followed by breath holding), and under levator ani muscle shrinking condition. These three kinds of state images clearly showed pelvic floor levator hiatus area and sagittal levator hiatus lengths change in the patients. ResultsPelvic floor was more relaxed in the observation group than that in the control group. The levator hiatus area and sagittal levator hiatus lengths were larger in the observation group than those in the control group, and the differences were significant (P<0.05). ConclusionTransperineal three-dimensional ultrasound imaging can better display pelvic anatomic structure, improve the effectiveness and accuracy of the diagnosis of pelvic organ prolapse, which is worthy of clinical application.
Objective To establish the three-dimensional (3D) finite element model of the knee joint including posterolateral complex (PLC), and to simulate the reconstruction biomechanical analysis in this model. Methods The knee of a 26-year-old healthy man was scanned by MRI to obtain the image data of the knee in the coronal, sagittal, and axial position. First, Mimics10.01 and Hyperworks 8.0 softwares were used to extract each slice profile data of the knee joint in a two-dimensional image data respectively and to establish 3D geometric model of bone, meniscus, articular cartilage, and ligament. Second, Unigraphics software NX 4.0 was used to establish a 3D finite element model of knee joint, which had the functions of Mesh, material properties, component connection, and contact definition. Third, displacement measurement on the model and reconstructing biomechanical analysis for PLC simulation were performed. Results The 3D finite element model of the knee joint including PLC was established successfully. Under 134 N forward force, the tibia forward displacement was 4.83 mm. PLC simulation reconstruction biomechanical analysis of the 3D finite element model of the knee joint showed that under 10 N·m varus and external rotation torque conditions, the knee varus and external rotation angles of simulation reconstruction were greater than those of the intact knee, and less than those of PLC missing. Conclusion The 3D finite element model of the knee joint including PLC can be established by the reverse engineering, and it is valid and can be used as the basis for the biomechanical properties to analog reconstruction of PLC.