【Abstract】ObjectiveTo evaluate the value of MR imaging with a contrast-enhanced multi-phasic isotropic volumetric interpolated breath-hold examination (VIBE) in diagnosis of primary liver carcinoma. MethodsThirty-two consecutive patients with surgical-pathologically confirmed 42 foci of primary carcinoma of liver underwent comprehensive MR examination of the upper abdomen, routine two-dimensional (2D) T1WI and T2WI images were acquired before administration of Gd-DTPA for contrast enhancement. Then, contrast-enhanced multi-phasic VIBE was acquired followed by 2D T1WI images. The lesion appearances on hepatic arterial, portal venous and equilibrium phases of VIBE sequence were carefully observed along with delineation of hepatic arterial and portal venous structures. The lesion detection rates and lesion characterization ability were compared among various MR sequences. Results33(78.6%), 30(71.4%), 38(90.5%) and 42(100%) foci were displayed respectively on T2WI, non-enhanced T1WI, enhanced T1WI and enhanced 3D-VIBE images (P<0.05). The hepatic arterial anatomy of 30 patients (93.8%) and the portal venous structure of 31 patients (96.9%) were clearly depicted on enhanced 3D-VIBE images. Using MIP and MPR reconstruction techniques, the feeding arteries of 14 foci and draining vein of 12 foci were clearly displayed.ConclusionHigh-quality 3D-VIBE images are not only better than 2D images in lesion detection and characterization for primary liver carcinoma, but also able to provide much more information about hepatic vascular anatomy.
The interventional therapy of vascular stent implantation is a popular treatment method for cardiovascular stenosis and blockage. However, traditional stent manufacturing methods such as laser cutting are complex and cannot easily manufacture complex structures such as bifurcated stents, while three-dimensional (3D) printing technology provides a new method for manufacturing stents with complex structure and personalized designs. In this paper, a cardiovascular stent was designed, and printed using selective laser melting technology and 316L stainless steel powder of 0−10 µm size. Electrolytic polishing was performed to improve the surface quality of the printed vascular stent, and the expansion behavior of the polished stent was assessed by balloon inflation. The results showed that the newly designed cardiovascular stent could be manufactured by 3D printing technology. Electrolytic polishing removed the attached powder and reduced the surface roughness Ra from 1.36 µm to 0.82 µm. The axial shortening rate of the polished bracket was 4.23% when the outside diameter was expanded from 2.42 mm to 3.63 mm under the pressure of the balloon, and the radial rebound rate was 2.48% after unloading. The radial force of polished stent was 8.32 N. The 3D printed vascular stent can remove the surface powder through electrolytic polishing to improve the surface quality, and show good dilatation performance and radial support performance, which provides a reference for the practical application of 3D printed vascular stent.
ObjectiveTo evaluate the safety and application value of three-dimensional reconstruction for localization of pulmonary nodules in thoracoscopic lung wedge resection.MethodsThe clinical data of 96 patients undergoing thoracoscopic lung wedge resection in our hospital from January 2019 to August 2020 were retrospectively reviewed and analyzed, including 30 males and 66 females with an average age of 57.62±12.13 years. The patients were divided into two groups, including a three-dimensional reconstruction guided group (n=45) and a CT guided Hook-wire group (n=51). The perioperative data of the two groups were compared.ResultsAll operations were performed successfully. There was no statistically significant difference between the two groups in the failure rate of localization (4.44% vs. 5.88%, P=0.633), operation time [15 (12, 19) min vs. 15 (13, 17) min, P=0.956], blood loss [16 (10, 20) mL vs. 15 (10, 19) mL, P=0.348], chest tube placement time [2 (2, 2) d vs. 2 (2, 2) d, P=0.841], resection margin width [2 (2, 2) cm vs. 2 (2, 2) cm, P=0.272] or TNM stage (P=0.158). The complications of CT guided Hook-wire group included pneumothorax in 2 patients, hemothorax in 2 patients and dislodgement in 4 patients. There was no complication related to puncture localization in the three-dimensional reconstruction guided group.ConclusionBased on three-dimensional reconstruction, the pulmonary nodule is accurately located. The complication rate is low, and it has good clinical application value.
Objective To review the application progress of digital technology in auricle reconstruction. Methods The recently published literature concerning the application of digital technology in auricle reconstruction was extensively consulted, the main technology and its specific application areas were reviewed. Results Application of digital technology represented by three-dimensional (3D) data acquisition, 3D reconstruction, and 3D printing is an important developing trend of auricle reconstruction. It can precisely guide auricle reconstruction through fabricating digital ear model, auricular guide plate, and costal cartilage imaging. Conclusion Digital technology can improve effectiveness and decrease surgical trauma in auricle reconstruction. 3D bioprinting of ear cartilage future has bright prospect and needs to be further researched.
ObjectiveTo explore a method of three-dimensional (3D) printing technology for preparation of personalized rat brain tissue cavity scaffolds so as to lay the foundation for the repair of traumatic brain injury (TBI) with tissue engineered customized cavity scaffolds. MethodsFive male Sprague Dawley rats[weighing (300±10) g] were induced to TBI models by electric controlled cortical impactor. Mimics software was used to reconstruct the surface profile of the damaged cavity based on the MRI data, computer aided design to construct the internal structure. Then collagen-chitosan composite was prepared for 3D bioprinter of bionic brain cavity scaffold. ResultsMRI scans showed the changes of brain tissue injury in the injured side, and the position of the cavity was limited to the right side of the rat brain cortex. The 3D model of personalized cavity containing the internal structure was successfully constructed, and cavity scaffolds were prepared by 3D printing technology. The external contour of cavity scaffolds was similar to that of the injured zone in the rat TBI; the inner positive crossing structure arranged in order, and the pore connectivity was good. ConclusionCombined with 3D reconstruction based on MRI data, the appearance of cavity scaffolds by 3D printing technology is similar to that of injured cavity of rat brain tissue, and internal positive cross structure can simulate the topological structure of the extracellular matrix, and printing materials are collagen-chitosan complexes having good biocompatibility, so it will provide a new method for customized cavity scaffolds to repair brain tissue cavity after TBI.
Objective To develop an in vitro three-dimensional angiogenesis system and analyze the expression and function of CD105 in angiogenesis. Methods After primary human umbilical vein endothelial cells (HUVEC) were purified and cultured, the microcarriers were coated with HUVEC and then embedded and cultured into fibrin gel. The angiogenesis process of HUVEC on the microcarriers was formed. The expression of CD105 during this process was detected by reverse transcription polymerase chain reaction (RT-PCR). Antisense oligodeoxynucleotide (ASODN) was used to inhibit the expression of CD105 and the changes of the angiogenesis process were analyzed quantitatively. Results HUVEC on the microcarriers which were embedded into the fibrin gel, occurred the angiogenesis process of sprouts, branches and capillary networks with lumina. During this process, CD105 was over expressed in the periods of forming sprouts and branches, and depressed in the relatively steady periods including the periods before forming sprouts and after forming capillary networks. While the expression of CD105 was inhibited by ASODN, the angiogenesis process was significantly inhibited. Conclusions The expression of CD105 is varied within the angiogenesis process, over expressing during the sprouts and branches forming periods. Inhibiting the expression of CD105 could efficiently inhibit angiogenesis.
ObjectiveTo investigate the effectiveness of digital three-dimensional (3D) printing osteotomy guide plate assisted total knee arthroplasty (TKA) in treatment of knee osteoarthritis (KOA) patients with femoral internal implants. Methods The clinical data of 55 KOA patients who met the selection criteria between July 2021 and October 2023 were retrospectively analyzed. Among them, 26 cases combined with femoral implants were treated with digital 3D printing osteotomy guide plate assisted TKA (guide plate group), and 29 cases were treated with conventional TKA (control group). There was no significant difference in gender, age, body mass index, side, Kellgren-Lawrence classification, preoperative visual analogue scale (VAS) score, Hospital for Special Surgery (HSS) knee score, knee range of motion, and other baseline data between the two groups (P>0.05). The operation time, intraoperative blood loss, incision length, postoperative first ambulation time, surgical complications; VAS score, knee HSS score, knee range of motion before operation, at 1 week and 3 months after operation, and at last follow-up; distal femoral lateral angle, proximal tibial medial angle, hip-knee-ankle angle and other imaging indicators at last follow-up were recorded and compared between the two groups. ResultsThe operation time, incision length, intraoperative blood loss, and postoperative first ambulation time in the guide plate group were significantly lower than those in the control group (P<0.05). In the control group, there were 1 case of incision rupture and bleeding and 1 case of lower limb intermuscular venous thrombosis, which was cured after symptomatic treatment. There was no complication such as neurovascular injury, incision infection, or knee prosthesis loosening in both groups. Patients in both groups were followed up 12-26 months, with an average of 16.25 months. The VAS score, HSS score, and knee range of motion improved at each time point after operation in both groups, and further improved with time after operation, the differences were significant (P<0.05). The above indicators in the guide plate group were significantly better than those in the control group at 1 week and 3 months after operation (P<0.05), and there was no significant difference between the two groups at last follow-up (P>0.05). At last follow-up, the distal femoral lateral angle, the proximal tibial medial angle, and the hip-knee-ankle angle in the guide plate group were significantly better than those in the control group (P<0.05). Conclusion The application of digital 3D printing osteotomy guide plate assisted TKA in the treatment of KOA patients with femoral implants can simplify the surgical procedures, overcome limitations of conventional osteotomy guides, reduce surgical trauma, achieve individualized and precise osteotomy, and effectively restore lower limb alignment and knee joint function.
Objective To elucidate the new development and effects of three-dimensional correction techniques of idiopathic scol iosis (IS). Methods The related home and abroad l iterature concerning three-dimensional correction techniques of IS was extensively reviewed. Results With more and more attention to three-dimensional correction of IS, all kinds of surgery and developed techniques of correction are applied to the correction of IS. The effects of three-dimensional correction of IS are satisfied. Conclusion With more knowledge about IS and more developed theory of correction, more safe and effective techniques of correction is therefore the hot spot for future study.
Objective To discuss the effect of three-dimensional (3D) printing individualized model and guide plate in bone tumor surgery. Methods Between October 2015 and December 2016, 3D printing individualized model and guide plate for making preoperative surgical planning and intraoperative treatment were used in 5 patients of bone tumor. All the patients were male, with a median age of 32 years (range, 9-58 years). There were 1 case of cystic echinococcosis at left pelvis and pathological fracture of the proximal femur; 1 case of left iliac bone osteoblastoma associated with aneurysmal bone cyst; 1 case of fibrous dysplasia of the left femur (sheep horn deformity) with pathological fracture; 1 case of metastatic carcinoma of right calcaneus (tumor staging was T2N0M0); and 1 case of Ewing sarcoma of left femur (tumor staging was T2N0M0). The disease duration ranged from 1 month to 10 years (mean, 2.25 years). Results The operation was completed successfully. The operation time was 2.6-7.5 hours (mean, 4.9 hours). The intraoperative blood loss was 200-2 500 mL (mean, 1 380 mL). The intraoperative fluoroscopy times was 1-6 times (mean, 3.8 times). There was no infection after operation, and the blood supply and nerve function were good. All the patients were followed up 3-16 months (mean, 5.4 months). No loosening or breaking of the internal fixator occurred. According to Enneking scoring system, the limb function score was 15-26 (mean, 21); and the results were excellent in 2 cases, good in 2 cases, and fair in 1 case. Conclusion 3D printing technology can make the implementation of the better preoperative planning and evaluation in bone tumor surgery, and it provides a new reference for individualized treatment in patients with bone tumor.
Objective To develop hepatic surgical planning software for hepatic operation on deciding the rational operational scheme and simulating procedures before the operation to accomplish the precise liver resection and decrease the operational risk. Methods3D-econstruction of liver was restored from spiral computed tomography (CT) data by using LiVirtue software. The liver and its anatomic structures were reconstructed to illuminate the location of the tumor and its related vessels to design a rational operational scheme. The virtul results, such as liver volume, hepatic sections, anatomy of portal vein and hepatic veins or possible operation plans, were compared with the actual situations during the operations. Results3D models of liver, tumor and their relative vessels were reconstructed successfully. Preoperative planning and intra-perative navigation based on the models ensured the safety of liver resection in our 32 cases of right lobe tumors. This preoperative simulation allowed surgeons to dissect the liver with reduced complications. These models could be also viewed and manipulated on personal computers.ConclusionThe LiVirtue is very helpful in the hepatic surgery, for clearly disclosing hepatic structures, rationally deciding operation schemes, virtually simulating the operations. This preoperative estimation from 3D model of liver benefits a lot to complicated liver resection.