Medical cross-modal retrieval aims to achieve semantic similarity search between different modalities of medical cases, such as quickly locating relevant ultrasound images through ultrasound reports, or using ultrasound images to retrieve matching reports. However, existing medical cross-modal hash retrieval methods face significant challenges, including semantic and visual differences between modalities and the scalability issues of hash algorithms in handling large-scale data. To address these challenges, this paper proposes a Medical image Semantic Alignment Cross-modal Hashing based on Transformer (MSACH). The algorithm employed a segmented training strategy, combining modality feature extraction and hash function learning, effectively extracting low-dimensional features containing important semantic information. A Transformer encoder was used for cross-modal semantic learning. By introducing manifold similarity constraints, balance constraints, and a linear classification network constraint, the algorithm enhanced the discriminability of the hash codes. Experimental results demonstrated that the MSACH algorithm improved the mean average precision (MAP) by 11.8% and 12.8% on two datasets compared to traditional methods. The algorithm exhibits outstanding performance in enhancing retrieval accuracy and handling large-scale medical data, showing promising potential for practical applications.
Online hashing methods are receiving increasing attention in cross modal medical image retrieval research. However, existing online methods often lack the learning ability to maintain semantic correlation between new and existing data. To this end, we proposed online semantic similarity cross-modal hashing (OSCMH) learning framework to incrementally learn compact binary hash codes of medical stream data. Within it, a sparse representation of existing data based on online anchor datasets was designed to avoid semantic forgetting of the data and adaptively update hash codes, which effectively maintained semantic correlation between existing and arriving data and reduced information loss as well as improved training efficiency. Besides, an online discrete optimization method was proposed to solve the binary optimization problem of hash code by incrementally updating hash function and optimizing hash code on medical stream data. Compared with existing online or offline hashing methods, the proposed algorithm achieved average retrieval accuracy improvements of 12.5% and 14.3% on two datasets, respectively, effectively enhancing the retrieval efficiency in the field of medical images.