The capacity of embryonic spinal cord tissue in the repair of injured structure of spinal cord has been noted for years. In order to investigate the embryonic spinal cord graft in the repair of motor function of injured spinal cord, the embryonic spinal cord tissue was transplanted to the hemisection cavity in spinal cord in adult rat. One hundred adult Wistar Rats were used to simulate the hemisectional injury of spinal cord by drilling 2-3 mm cavity in lumbar enlargement. Sixty rats were treated with rat embryonic spinal cord tissue grafting while the other forty were chosen as control. The outcome was evaluated according the combined behavioural score (CBS) and motor evoked potential (MEP) in the 1, 2, 4 and 12 weeks. The grafting group was superior to the control as assessed by CBS (P lt; 0.05), especially within 4 weeks. (P lt; 0.01). The restoration of the latent peak of early wave(P1, N1) was better in the grafting group, too. This suggested that embryonic spinal cord graft could improve the recovery of motor function of injured spinal cord in adult rat. The effect of the embryonic spinal cord tissue graft might be concerned with its secretion of several kinds of neurotrophic factors, nerve growth factor, nerve transmitted factor, or adjustment of hormone.
OBJECTIVE: To investigate the protective effect of tumor necrosis factor-alpha(TNF-alpha) on spinal motor neurons after peripheral nerve injury. METHODS: Twenty Wistar rats were divided into two groups, the right sciatic nerves of 20 Wistar rats were transected, the proximal stumps were inserted into a single blind silicone tube. 16 microliters of normal saline(NS) and TNF-alpha(30 U/ml) were injected into the silicone tubes. After 2 weeks, the 4th, 5th lumbar spinal cord were taken for examination. Enzyme histochemical technique and image analysis were used to show acetylcholinesterase(AChE) and nitric oxide synthase(NOS) activity of spinal motor neurons. RESULTS: The number of AChE and NOS staining neurons were 8.65 +/- 1.98 and 5.92 +/- 1.36 in the experimental group and 6.37 +/- 1.42 and 8.67 +/- 1.45 in the control group respectively, there were significant difference between the two groups(P lt; 0.01). CONCLUSION: It suggests that TNF-alpha has protective effect on motor neurons after peripheral nerve injury.
Objective To investigate the division, prol iferation and differentiation abil ities of nestin+/GFAP+cell after spinal cord injury and to identify whether it has the characteristic of neural stem cells (NSCs). Methods Twelvemale SD rats, aged 8 weeks and weighing 200-250 g, were randomized into 2 groups (n=6 per group): model group inwhich the spinal cord injury model was establ ished by aneurysm cl ip compression method, and control group in which no processing was conducted. At 5 days after model ing, T8 spinal cord segment of rats in each group were obtained and the gray and the white substance of spinal cord outside the ependymal region around central tube were isolated to prepare single cellsuspension. Serum-free NSCs culture medium was adopted to culture and serum NSCs culture medium was appl ied to induce differentiation. Immunohistochemistry detection and flow cytometry were appl ied to observe and analyze the type of cells and their capabil ity of division, prol iferation and differentiation. Results At 3-7 days after injury, the model group witnessed a plenty of nestin+/GFAP+ cells in the single cell suspension, while the control group witnessed few. Cell count of the model and the control group was 5.15 ± 0.71 and 1.12 ± 0.38, respectively, indicating there was a significant difference between two groups (P lt; 0.01). Concerning cell cycle, the proportion of S-phase cell and prol iferation index of the model group (15.49% ± 3.04%, 15.88% ± 2.56%) were obviously higher than those of the control group (5.84% ± 0.28%, 6.47% ± 0.61%), indicating there were significant differences between two groups (P lt; 0.01). In the model group, primary cells gradually formed threedimensional cell clone spheres, which were small in size, smooth in margin, protruding in center and positive for nestin immunofluorescence staining, and large amounts of cell clone spheres were harvested after multi ple passages. While in the control group, no obvious cell clone spheres was observed in the primary and passage culture of single cell suspension. At 5 days after induced differentiation of cloned spheres in the model group, immunofluorescence staining showed there were a number of galactocerebroside (GaLC) -nestin+ cells; at 5-7 days, there were abundance of β-tubul in III-nestin+ and GFAP-nestin+ cells; and at 5-14 days, GaLC+ ol igodendrocyte, β-tubul in II+ neuron and GalC+ cell body and protruding were observed. Conclusion Nestin+/GFAP+ cells obtained by isolating the gray and the white substance of spinal cord outside the ependymal region around central tube after compressive spinal cord injury in adult rat has the abil ity of self-renewal and the potential of multi-polarization and may be a renewable source of NSCs in the central nervous system.
Objective To investigate the latest research and the therapeutic development in the injuries to the spine and spinal cord. Methods Literature concerned was reviewed, combined with our own research and clinical experience, to summarize the trend of the researches and their clinical application in the treatment of the injured spine and spinal cord.Results Theposterior approach atlantoaxial stabilization technique changed the conventional wiring technique into the transarticular screw fixation to the plate and pedicle or the lateral mass screw fixation technique. Theclinical application of the transoralpharyngeal atlantoaxial reduction plate fixation technique showed a good effect on the reduction of atlantoaxial dislocation. However, there were no unified criteria for selection of the surgical approach, fixation level, and fusion mode in the treatment of thoracolumbar spinalfractures. Under optimal conditions, both the anterior and the posterior approaches could achieve good clinical effects on decompression and spinal reconstruction. The single level fixation technique showed some advantages in treating certaintypes of thoracolumbar spinal fractures when compared with the traditional cross-sectional fixation. The endoscopy-assistant and image-guiding spinal intervention techniques were evolved in China during these years. In the treatment of the obstinate painful osteoporotic vertebral compressive fracture, percutaneous vertebroplasty and kyphoplasty achieved good results in the pain relief and spinal reconstruction. Numerous basic and clinical researches have given us a further understanding of the medical protection of acute spinal cord injury, and biological treatments have given us new ideas on neural reparation and regeneration. Cell transplantation and gene therapy have become the most promising treatment strategies in this field.Conclusion With the rapid development of spine surgery, the repair and reconstruction ofthe injured spine and spinal cord made a great stride in the recent years.
Objective To investigate the synergistic effect of a combination of grafted olfactory ensheathing cells (OECs) from the olfactory bulbs and intrathecal injection of vascular endothel ial growth factor (VEGF) on repairing spinal cord injury, and to explore the neuroprotection on both neurons and nerve fibers. Methods OECs from neonatal rats were cultured, purified, and collected with 0.25% trypsin after 9 days. A total of 75 adult female Wistar rats (weighing 200-250 g) were randomly divided into 5 groups: group A was sham-surgery group receiving laminectomy; the spinal cord injury model was establ ished with weight-dropped apparatus in the rats of groups B, C, D, and E. Then group B was injected with 10 μL DMEM-F12 medium without serum at injury site on the 1 day and was intrathecally administrated with 10 μL sal ine solutiontwice a day during the following 1 week; group C was injected with 10 μL DMEM-F12 medium and 25 ng recombined ratVEGF165 (rrVEGF165); group D was injected with 10 μL DMEM-F12 medium containing 1 × 105 OECs and 10 μL sal ine solution; group E was injected with 10 μL DMEM-F12 medium containing 1 × 105 OECs and 25 ng rrVEGF165. The functional recovery of hindl imb was evaluated by the Basso-Beattie-Bresnahan (BBB) score at 1 day and each week from 1 to 8 weeks. The histological changes and the changes of ultrastructure were observed at 8 weeks after operation by HE and electron microscope, and the immunohistochemistry staining was used for p75 nerve growth factor receptor (p75NGFR), Caspase-3, and von Willebrand factor (vWF). Results The function of hindl imb recovered rapidly in group E; the BBB score reached the peak at 8 weeks, and it was significantly higher than those in other groups (P lt; 0.05). The histology and ultrastructure observation showed that nerve fibers and neurons were damaged seriously in group B, oderately in groups C and D, and sl ightly in group E. Numerous spared tissue between nerve stumps, fibers with regular myel ination, and neurons with l ittle vacuolar mitochondria were observed in group E. The immunohistochemistry staining revealed that Caspase-3 positive cells in groups B, C, D, and E were significantly more than that in group A (P lt; 0.05); more Caspase-3 positive cells were found in groups B and D than in groups C and E (P lt; 0.05), while no significant difference was found between groups C and E (P gt; 0.05). And more vessels per high field were examined in groups C and E than in groups A, B, and D (P lt; 0.05), while no significant difference was found between groups C and E (P gt; 0.05). The p75NGFR positive results showed the survival of OECs in groups D and E at 8 weeks after OECstransplantation. Conclusion Grafted OECs combined with intrathecal injection of VEGF has significant promotive effects on restoration of spinal cord injury in rats, can improve part function of nerve fibers, and shows neuroprotection on damaged cells and fibers, which have a synergistic effect.
ObjectiveTo investigate the regulatory effect of miRNA-21-5p (miR-21) on spinal fibroblasts, and to explore the mechanism of miR-21 related pathological process of spinal cord injury.MethodsSpinal cord fibroblasts were identified by immunofluorescence. Spinal fibroblasts damage model was established by scratch method. Quantitative real-time polymerase chain reaction (RT-PCR) was used to determine the relative expression of miR-21 and fibrosis-related genes in spinal cord fibroblasts after injury. The expression of miR-21 in spinal cord fibroblasts was up-regulated and down-regulated by using miR-21 mimics/inhibitor, and the expression levels of apoptosis and proliferation-related proteins were detected by Western Blot (WB).ResultsThe expression of miR-21 and fibrosis-related genes were increased after spinal cord fibroblast scratch (P<0.05). Up-regulation of the miR-21 can increase the expression of apoptosis-related genes in fibroblasts (P<0.05), and vice versa. The proliferation of fibroblasts was consistent with the expression of miR-21, while the apoptosis of fibroblasts was contrary to the expression of miR-21.ConclusionsmiR-21 enhanced the fibrosis and proliferation, inhibited the apoptosis of spinal cord fibroblasts after mechanical injury. This indicates that miR-21 is closely related with the formation of fibrotic scar after spinal cord injury, which also providesa potential therapeutic target for spinal cord injury.
Objective To compare the surgical efficacy of different operating methods for treating old thoracolumbarfracture with spinal cord injury. Methods From September 2000 to March 2006, 34 cases of old thoracolumbar fractures with spinal cord injury were treated. Patients were divided into 2 groups randomly. Group A (n=18): anterior approach osteotomy, il iac bone graft and internal fixation were used. There were 10 males and 8 females with the age of 17-54 years. The apex level of kyphosis was T11 in 2 cases, T12 in 5 cases, L1 in 8 cases and L2 in 3 cases. The average preoperative Cobb angle of kyphosis was (36.33 ± 3.13)°, and the average preoperative difference in height between anterior and posterior of involved vertebra was (22.34 ± 11.61) mm. Neurological dysfunction JOA score was 10.44 ± 1.12. Group B (n=16): transpedicular posterior decompression and internal fixation were used. There were 8 males and 8 females with the age of 18-56 years. The apex level of kyphosis was T11 in 2 cases, T12 in 6 cases, L1 in 7 cases and L2 in 1 case. The preoperative Cobb angle of kyphosis was (38.55 ± 4.22)°, and the preoperative difference in height between anterior and posterior of involved vertebra was (20.61 ± 10.22) mm. Neurological dysfunction JOA score was 10.23 ± 2.23. Results All the patients were followed up for 9-46 months with an average of 13.5 months. Cobb angle was (12.78 ± 3.76)° in group A, which was improved by (24.23 ± 1.64)° campared to that of preoperation; and was (10.56 ± 4.23)° in group B, which was improved by (26.66 ± 1.66)°. JOA score was 14.21 ± 1.08 in group A, which wasimproved by 3.92 ± 1.33; and it was 13.14 ± 2.32 in group B, which was improved by 3.12 ± 1.95. The average postoperative difference between anterior height and posterior height of vertebral body in group A was (3.11 ± 1.06) mm, which was improved by (18.03 ± 2.14) mm; and it was (2.56 ± 1.33) mm in group B, which was corrected by (20.36 ± 3.78) mm. There were statistically significant differences in the above indexes between preoperation and postoperation in 2 groups (P lt; 0.01), but no significant differences between 2 groups (P gt; 0.05). In group A, pleural effusion occurred in 2 cases and local pulmonary collapse in 4 cases and intercostals neuralgia in 1 case. In group B, leakage of cerebrospinal fluid occurred in 3 cases. Conclusion Both anterior and posterior approach are capable of treating of the old thoracolumbar fracture with incomplete spinal cord injury and providing the satisfying result of deformation correction, neurological decompression and neurological functional recovery to a certain extent.
To investigate the effect of propofol intra-aortic and intravenous infusion on the concentration of propofol for an ischemia-reperfusion spinal cord injury in rabbits. Methods Forty-six healthy adult New Zealand white rabbits were randomly divided into 3 groups: sal ine infusion group (group N, n=10), propofol intra-aortic infusion group (group A, n=16) and propofol intravenous infusion group (group V, n=16). The infrarenal abdominal aorta was occluded for 30 min during which propofol 50 mg/kg was infused continuously intra-aortic or intravenous with a pump in group A and V. In group N, the same volume of normal sal ine was infused in the same way and at the same rate as in group A. Upon reperfusion, propofol concentration of the spinal segments of L4-6 and T6-8 was examined in group A and V. At 48 hoursafter reperfusion, the neurological outcomes were recorded in each group. Results Mean blood pressure in group V from the time of 5 minutes after occlusion decreased more than in group N (P lt; 0.05) and than in group A from the time of 10 minutes after occlusion(P lt; 0.05). The mean blood pressure in group N increased more than in group A from 15 minutes after occlusion (P lt; 0.05). The heart rate increased more in group V from 10 minutes after occlusion than in group N and A (P lt; 0.05) in which no difference was observed. The propofol concentration in L4-6 of group A (26 950.5 ± 30 242.3) ng/g was higher than that in T6-8 of group A (3 587.4 ± 2 479.3) ng/g and both L4-6 (3 045.9 ± 2 252.9) ng/g and T6-8 (3 181.1 ± 1 720.9) ng/g of group V(P lt; 0.05). The paraplegia incidence was lower (30%) and the median of normal neurons was higher (8.4) in group A than in group N (80%, 2.2) and group V(100%, 1.9), (P lt; 0.05). There was no significant difference in group N and V in paraplegia incidenceand the median of normal neurons (P gt; 0.05). Conclusion Intra-aortic infusion shows a better neurological outcome than intravenous infusion and could contribute to higher concentration of propofol in the ischemia spinal cord.
ObjectivesTo systematically review the safety and efficacy of autologous bone marrow mesenchymal stem cells (BMSCs) transplantation for spinal cord injury (SCI) patients.MethodsPubMed, The Cochrane Library, EMbase, CNKI, CBM, WanFang Data and VIP databases were electronically searched to collect randomized controlled trials (RCTs) and clinical controlled trials (CCTs) of autologous BMSCs transplantation for SCI patients from inception to June 8th, 2017. Two reviewers independently screened literature, extracted data and assessed risk of bias of included studies. Meta-analysis was then performed using RevMan 5.3 software.ResultsA total of 16 studies involving 954 SCI patients were included. The results of meta-analysis showed that: BMSCs could significantly increase the patients’ ASIA motor score (MD=6.91, 95%CI 3.95 to 9.87, P<0.000 01), ASIA light-tough score (MD=11.79, 95%CI 6.66 to 16.39,P<0.000 01), ASIA pain score (MD=8.76, 95%CI 4.11 to 13.40,P=0.000 2), Barthel index score (MD=8.47, 95%CI 7.32 to 9.61, P<0.000 01). It could also improve the ASIA grade (OR=3.75, 95%CI 2.35 to 5.99,P<0.01), and decrease the bladder urine residue (MD=–23.32, 95%CI –46.27 to –0.37,P=0.05). The complications mainly included headache, low-grade fever, and so forth. No serious adverse event and abnormal tissue formation occurred.ConclusionAutologous BMSCs transplantation is a safe and effective therapy for SCI. Due to limited quality and quantity of the included studies, more high quality studies are required to verify the above conclusion.
ObjectiveTo evaluate the effect of time-related administration of methotrexate (MTX) on neural cell apoptosis in rats after spinal cord injury (SCI) so as to investigate its potential neuroprotective mechanism and appropriate administration time. MethodA total of 120 male Sprague Dawley rats, 247-286 g in weight, were randomly divided into 4 groups (n=30) :sham group (group A), control group (group B), MTX treating group (group C), and MTX prophylaxis group (group D). The SCI model was established in the rats of groups B, C, and D by improved Allen method, and just laminectomy was performed in group A. MTX (0.5 mg/kg) was administered with tail vein injection at 1, 6, 12, 18, and 24 hours after injury in group C, and at 30 minutes before injury and at 6, 12, 18, and 24 hours after injury in group D; the equivalence saline was injected at 1, 6, 12, 18, and 24 hours after injury in groups A and B. Basso-Beattie-Bresnahan (BBB) score was used to evaluate the neural function at 1, 3, 7, 14, and 21 days after injury, HE staining to observe histological changes, immunohistochemical staining and TUNEL method to measure the expression of Caspase-3 and neural cells apoptosis, respectively. ResultsTen rats died during the experiment in groups B, C, and D; 25 rats in each group were included into the experiments at last. BBB score of group A was significantly higher than that of groups B, C, and D at all time points after injury (P<0.05) . BBB score of groups C and D were significantly higher than that of group B at 3, 7, 14, and 21 days (P<0.05) , and BBB score of group D was significantly higher than that of group C at 3, 7, and 14 days (P<0.05) . The histological observation showed normal structure of spinal cord at all time points after injury in group A. While the degree of SCI in group D was lighter than that in groups B and C, and group C was lighter than group B. At 14 days after injury, the degree of SCI in groups B, C, and D tend to keep the same. The number of Caspase-3 and TUNEL positive cells of groups B, C, and D was significantly more than that of group A at all time points after injury (P<0.05) , group B was significantly more than groups C and D (P<0.05) . The number of Caspase-3 positive cells of group C was significantly more than that of group D at 3, 7, and 14 days (P<0.05) . While the number of TUNEL positive cells of group C was significantly more than that of group D at 3 and 7 days (P<0.05) . And the number of Caspase-3 positive cells and TUNEL positive cells was positively correlated in groups B, C, and D (P<0.05) at 1, 3, 7, 14, and 21 days after injury. ConclusionsLow-dose MTX may effectively reduce the degree of the secondary injury of spinal cord by reducing the nerve cell apoptosis. Better effect can be obtained when MTX is used as prevent method than as a way of treatment.