Objective To investigate the effects of simvastatin on lung tissue in septic rats by observing the protein expression of nuclear factor kappa B ( NF-κB) and pathologic changes in lung tissue at different time points. Methods 90 healthy male Sprague-Dawley rats were randomly divided into three groups ( n =30 in each group) . All the rats received administration by caudal vein and capacity volume is 2 mL. The rats in the control group were treated with saline ( 2 mL) . The rats in the LPS group were treated with LPS ( 5 mg/kg ) . The rats in the simvastatin group were treated with LPS ( 5 mg/kg) and simvastatin ( 20 mg/kg) . Six rats in each group were killed randomly at 2, 4, 6, and 12 hours after the injection, and the right middle lobe of lung was taken out. Pathological changes of lung tissue wee investigated under light microscope. The expression of NF-κB in lung tissue was determined by immunohistochemistry ( IHC) method. Results Microscopic studies showed that there were not pathological changes in the lung tissue of rats in the control group. While in the LPS group, the alveolar spaces were narrowed and the alveolar wall were thickened. Furthermore, severe interstitial edema of lung and proliferation of epithelial cells were observed. In the simvastatin group, the degree of the infiltration of leukocytes and the lung interstitial edema were less severe than those in the simvastatin group. In the control group, the expression of NF-κB protein in most of lung tissue was negative. In the LPS group, the expression of NF-κB protein was detected at 2h, andreached the peak at 6h, then decreased at 12h. In the Simvastatin group, the NF-κB expression was significantly lower than that in the LPS group at all time points ( P lt; 0. 01) . Conclusion Simvastatin can ameliorate pathological lesions and decrease expression of NF-κB in lung tissue of septic rats.
ObjectiveTo systematically review the efficacy and safety of simvastatin and its different doses in the adjunct therapy of chronic obstructive pulmonary disease (COPD).MethodsPubMed, EMbase, Web of Science, The Cochrane Library, CNKI, WanFang Data, CBM and VIP databases were electronically searched to collect randomized controlled trials (RCTs) on adjunct therapy of simvastatin in patients with COPD from inception to May 15th, 2020. Two reviewers independently screened literature, extracted data and assessed risk bias of included studies; then, meta-analysis was performed by using Stata 14.0 software.ResultsA total of 22 RCTs involving 2 377 patients were included. The results of meta-analysis showed that treatment with 20 mg simvastatin could improve FEV1%pred, FEV1/FVC, and reduce inflammatory indexes such as CRP, hs-CRP, IL-8 and TNF-α, while 40 mg failed to improve. Simvastatin could reduce COPD score (CAT), but failed to increase the 6-minute walking distance or alleviate acute exacerbation.ConclusionsCurrent evidence shows that treatment with 20 mg simvastatin can improve pulmonary function, reduce inflammatory index and optimize CAT score in COPD patients, but it cannot increase the 6-minute walking distance and reduce the number of acute exacerbations of COPD. Due to the limited quantity and quality of included studies, the above conclusions are needed to be verified by more high-quality studies.
Objective To confirm the stimulating effect of simvastatin on BMSCs of SD rats osteogenic differentiation, and to further study the role of Wnt signal ing pathway in this process. Methods BMSCs derived from the tibia and femur of 6-week-old female SD rats were cultured in vitro.Two groups were establ ished: control group and experimental group. After the 2nd passage, the cells of experimental group were treated with simvastatin (1 × 10-7mol/L) and the cells of control group with absolute ethyl alcohol and PBS. ALP staining was used at 7 days and von Kossa staining was appl ied at 28 days to assess osteoblastic differentiation and mineral ization. Real-time quantitative PCR was performed to evaluate theexpressions of Axin2, β-catenin, osteocalcin (OC), frizzled-2, Lef-1, and Wnt5a mRNA at 7 days and 14 days after simvastatin treatment. Results The observation of inverted phase contrast microscope showed that the majority of cells were polygonal and triangular in the experimental group, and were spindle-shaped in the control group at 7 days. The ALP staining showed blue cytoplasm, the positive cells for ALP staining in the experimental group were more than those in the control group at 7 days. The von Kossa staining showed that mineral ization of extracelluar matrix at 28 days in two groups, but the mineral ization in the experimental group was more obvious than that in the control group. The expression of Axin2 mRNA was significantly lower, and frizzled-2, Lef-1 mRNA were significantly higher in the experimental group than in the control group (P lt; 0.05) at 7 days, while the mRNA expressions of Axin2, OC, frizzled-2, Lef-1, and Wnt5a were significantly higher in the experimental group than in the control group at 14 days (P lt; 0.05). Conclusion Simvastatin can promote the osteogenic differentiation of BMSCs and change the expression of mRNA of some components of Wnt signal ing pathway.
Objective To evaluate the mechanisms of p42/p44 kinase phosphorylation in cell models and to investigate the effect of simvastatin on the prevention and treatment of aseptic loosening of prosthesis by observing the influence of simvastatin on the levels of tumor necrosis factor α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1) of human peri pheral blood mononuclear cell (PBMC) challenged with titanium particles. Methods PBMC from 45 mL peripheral blood of healthy adult voluntary donators, were separated and cultured, and divided into 5 groups according to different culturemedium: group A, PBMC and titanium particles; group B, PBMC and titanium particles with 1 × 10-5 mol/L simvastatin; group C, PBMC and titanium particles with 1 × 10-6 mol/L simvastatin; group D, PBMC and titanium particles with 1 × 10-7 mol/L simvastatin; and group E, PBMC and titanium particles with the extracellular signal-regulated kinase (ERK1/2) inhibitor U0126. The contents of TNF-α and MCP-1 were tested by ELISA after 24 hours of culture. PBMC were pretreated with different medium grouping as groups A, B, C, D, and E for 60 minutes, and were challenged with titanium particles for 30 minutes and 60 minutes, then the level of ERK1/2 expression was tested by Western blot. Results In groups A, B, C, D, and E, the absorbance (A) values of TNF-α were 1.115 5 ± 0.243 6, 0.693 6 ± 0.354 3, 0.695 7 ± 0.387 3, 0.716 4 ± 0.478 9, and 0.263 5 ± 0.101 6, respectively; and the A values of MCP-1 were 1.421 0 ± 0.105 3, 0.915 1 ± 0.411 3, 1.003 5 ± 0.464 2, 1.102 0 ± 0.353 9, and 0.271 3 ± 0.145 1, respectively. The levels of TNF-α and MCP-1 in group A were significantly higher than others, showing significant differences (P lt; 0.05). There were significant differences between group E and groups B, C, and D (P lt; 0.05), between group B and groups C, D (P lt; 0.05); no significant difference between group C and group D (P gt; 0.05). Western blot results showed the expression of ERK1/2 in all groups at 30 minutes and 60 minutes of culture. The levels of ERK1/2 expression were 1.612 1 ± 0.068 2, 1.078 1 ± 0.072 8, 1.268 7 ± 0.223 1, 1.439 7 ± 0.180 1, and 0.732 0 ± 0.110 4 in groups A, B, C, D, and E, respectively; showing significant differences between groups (P lt; 0.05). Conclusion ERK1/2 is a phosphorylated protein after stimulated by wear particles; it is also one of the most important cell signal ing activation of macrophage. Simvastatin can inhibit the expression of bone absorptive factors induced by wear particles and may be used in the prevention and treatment of aseptic loosening of prosthesis.
Objective To investigate the effect of simvastatin on inducing endothel ial progenitor cells (EPCs) homing and promoting bone defect repair, and to explore the mechanism of local implanting simvastatin in promoting bone formation. Methods Simvastatin (50 mg) compounded with polylactic acid (PLA, 200 mg) or only PLA (200 mg) was dissolved in acetone (1 mL) to prepare implanted materials (Simvastatin-PLA material, PLA material). EPCs were harvested from bone marrow of 2 male rabbits and cultured with M199; after identified by immunohistochemistry, the cell suspension of EPCs at the 3rd generation (2 × 106 cells/mL) was prepared and transplanted into 12 female rabbits through auricular veins(2 mL). After 3 days, the models of cranial defect with 15 cm diameter were made in the 12 female rabbits. And the defects were repaired with Simvastatin-PLA materials (experimental group, n=6) and PLA materials (control group, n=6), respectively. The bone repair was observed after 8 weeks of operation by gross appearance, X-ray film, and histology; gelatin-ink perfusion and HE staining were used to show the new vessels formation in the defect. Fluorescence in situ hybridization (FISH) was performed to show the EPCs homing at the defect site. Results All experimental animals of 2 groups survived to the end of the experiment. After 8 weeks in experimental group, new bone formation was observed in the bone defect by gross and histology, and an irregular, hyperdense shadow by X-ray film; no similar changes were observed in control group. FISH showed that the male EPC containing Y chromosome was found in the wall of new vessels in the defect of experimental group, while no male EPC containing Y chromosome was found in control group. The percentage of new bone formation in defect area was 91.63% ± 4.07% in experimental group and 59.45% ± 5.43% in control group, showing significant difference (P lt; 0.05). Conclusion Simvastatin can promote bone defect repair, and its mechanism is probably associated with inducing EPCs homing and enhancing vasculogenesis.
Objective To investigate the effects of simvastatin on monocrotaline-induced pulmonary hypertension in rats, and explore the potential mechanism of simvastatin by blocking heme oxygenase-1( HO-1) expression. Methods 52 male Sprague-Dawley rats were randomly divided into five groups, ie. a control group, a simvastatin control group, a pulmonary hypertension model group, a simvastatin treatment group, a ZnPP ( chemical inhibitor of HO) group. Mean pulmonary arterial pressure ( mPAP) and right ventricular systolic pressure ( RVSP) were detected by right heart catheter at 5th week. Right ventricular hypertrophy index ( RVHI) was calculated as the right ventricle to the left ventricle plus septum weight. Histopathology changes of small intrapulmonary arteries were evaluated via image analysis system.Immunohistochemical analysis was used to investigate the expression and location of HO-1. HO-1 protein level in lung tissue were determined by western blot. Results Compared with the model group, simvastatin treatment decreased mPAP and RVHI significantly [ ( 35. 63 ±5. 10) mm Hg vs. ( 65. 78 ±15. 51) mm Hg,0. 33 ±0. 05 vs. 0. 53 ±0. 06, both P lt; 0. 05 ] . Moreover, simvastatin treatment partially reversed the increase of arterial wall area and arterial wall diameter [ ( 50. 78 ±9. 03 ) % vs. ( 65. 92 ±7. 19) % ,( 43. 75 ±4. 23) % vs. ( 52. 00 ±5. 35) % , both P lt; 0. 01) . In the model group, HO-1 staining was primarily detected in alveolar macrophages. Simvastatin treatment increased HO-1 protein expression significantly, especially in the thickened smooth muscle layer and alveolar macrophages. Inhibiting HO-1 expression using ZnPP resulted in a loss of the effects of simvastatin. mPAP in the ZnPP group was ( 52. 88±17. 45) mm Hg, while arterial wall area and arterial wall diameter were ( 50. 78 ±9. 03) % and ( 52. 00 ±5. 35) % , respectively. Conclusions Simvastatin attenuates established pulmonary arterial hypertension andpulmonary artery remodeling in monocrotaline-induced pulmonary hypertension rats. The effect of simvastatin is associated with HO-1.
Objective Simvastatin has been reported to be effective on stimulation of bone formation. To investigate the effects of simvastatin on bone formation relative factors of proximal tibia trabecular bone and on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Methods Fourty 1-week-old male Sprague Dawley rats were divided randomly into 2 groups, 20 rats per group. Rats in experimental group received subcutaneous injection of simvastatin [(5 mg/ (kg• d)], and the rats in control group received injection of normal sal ine at the same dose. The expressions of bone morphogenetic protein 2 (BMP-2), matrix metalloproteinase 13 (MMP-13), and vascular endothel ial growth factor (VEGF) of trabecular bone were analyzed in the tibia by immunohistochemical staining at 1 and 3 weeks after injection. BMSCs from the rat femur at 1 and 3 weeks after injection were cultured under condition of osteogenic induction. ALP staining wasperformed on the 14th day after culture; real-time fluorescent quantitative PCR was used to detect the mRNA expressions of BMP-2, Runx2, Osterix, Msx2, Dlx3, and Dlx5 on the 21st day after culture; and von Kossa staining was performed on the 28th day after culture. Results There was no significant difference in the expressions of BMP-2, MMP-13, and VEGF betweenthe experimental group and control group at 1 and 3 weeks after injection (P gt; 0.05). There was no significant difference in the percentages of ALP positively-stained cells between the experimental group and the control group on the 14th day after culture (P gt; 0.05). The mRNA expressions of BMP-2, Runx2, Osterix, Msx2, Dlx3, and Dlx5 in osteogenic differentiation-inducedBMSCs had also no significant difference between the experimental group and the control group at 1 and 3 weeks after culture (P gt; 0.05). No significant difference in biomineral ization was found between the experimental group and control group at 1 and 3 weeks after culture (P gt; 0.05). Conclusion Subcutaneous injection of simvastatin [(5 mg/(kg•d)] for 1 or 3 weekscan affect neither the expressions of bone formation relative factors of proximal tibia trabecular bone nor the osteogenic differentiation of the BMSCs.
ObjectiveTo explore the effects of simvastatin on the expression of matrix metalloproteinase (MMP) and inflammatory factors in rats with smoke-induced chronic obstructive pulmonary disease (COPD). Methods40 male Wistar rats were randomly divided into four groups, including a normal group (group A), a simvastatin group (group B), a COPD model group (group C) and a simvastatin intervention group (group D). The COPD model of the group C and D were induced through exposing to the cigarette smoke repeatedly. At the same time, the rats of group B and D were given by gavage 5 mg/(kg·d) with simvastatin, and the other two groups were given with the same volume saline for 16 weeks. Pulmonary function tests and pathological examination of the lung tissue were performed after the induction of COPD model. Enzyme-linked immunosorbent assay (ELISA) method was used to measure the content of MMP-2, MMP-9, IL-6, IL-8, TNF-α in lung tissue homogenate. ResultsThe airway resistance of group C and group D was significantly higher than the group A and group B (P<0.01), and the airway resistance of group D was significantly lower than group C (P<0.01). The degree of bronchial inflammation and emphysema of group C was more apparent than group D in the pathological section, and there were no bronchial inflammation and emphysema in group A and group B. The ELISA results showed that the contents of MMP-2, MMP-9, IL-6, IL-8, TNF-α in group C were all significantly higher than those in group D. ConclusionSimvastatin has inhibitory effect on pulmonary inflammation of COPD, and can reduce the expression of matrix metalloproteinase and inflammatory factors in the lung.
Objective To assess the effectiveness and safety of nine lipid-lowing agents in the national essential drug list (2000) and provide evidence for the adjustment and selection of essential drugs. Methods Based on principles of health technology assessment (HTA) and evidence-based medicine, we searched for all published clinical studies about these drugs from the following databases: MEDLINE (1966-2002.8), The Cochrane Library, EMBASE (1974-2002), CBMdisk (1979-2002.8) and VIP (1989-2002.8), the database of National Center for Adverse Drug Reaction(ADR) Monitoring of China and the database of WHO Uppsala drug monitoring center. Included studies were appraised, analyzed and compared for the reduction of triglyceride (TC) or low density lipoprotein (LDL-C), the prevention for the coronary events and the incidence of ADR. Results The results from comparative trials for lipid-lowing agents showed that the equivalent dose of statins for 25% reduction of LDL-C was atorvastatin 10 mg/d, simvastatin 20 mg/d, pravastatin 40mg/d, lovastatin 40 mg/d, cerivastatin 0.3 mg/d and fluvastatin 80 mg/d. It was difficult to compare fenofibrate with gemfibrozil, acipimox with statins or fibrates based on available data. The study on the primary and secondary prevention of cardiovascular events showed that pravastatin and lovastatin were effective in primary prevention, and long-term use could reduce the incidence of cardiovascular disease.Gemfibrozil could reduce the mortality from coronary heart disease (CHD) but the overall mortality was not changed. Pravastatin, simvastatin, atorvastatin, fluvastatin, gemfibrozil and fenofibrate had a confirmed effect in secondary prevention. Data from large-scale clinical trials and the reports from ADR monitoring center of England, America, Canada and Australia suggested that the statins which had rare ADR were safe and tolerated. Rhabdomyolysis was rare but had a serious adverse reaction associated with statins. The rate of fatal rhabdomyolysis related to cerivastatin was the highest among 6 statins. The safety of simvastatin, lovastatin and atorvastatin was lower than cerivastatin but higher than simvastatin and atorvastatin. The number of ADR reports of fenofibrate was fewer than that of gemfibrozil. Conclusions At present, the best evidence focused on pravastatin, simvastatin and lovastatin are widely used and have a confirmed safety and efficacy. Atorvastatin, fluvastatin and fenofibrate still need more data to confirm their effects on coronary heart disease prevention. The drugs which were shown to be inferior or insufficient evidence are cerivastatin, gemfibrozil and acipimox.
OBJECTIVE: To study the effect of simvastatin on the expression of bone morphogenetic protein-2 (BMP-2) and alkaline phosphates (ALP) activity in the primary cultured bone marrow stromal cells, and to elucidate the mechanism of the anabolic osteogenetic effect of simvastatin. METHODS: Bone marrow stromal cells in femur and tibia of adult mouse were cultured in vitro. after treated with different concentrations of simvastatin (0, 0.1, 0.2, 0.5 and 1.0 mumol/L) or recombinant human BMP-2 for 72 hours, ALP activity of bone marrow stromal cells was determined. BMP-2 expression of bone marrow stromal cells was analyzed by using immunocytochemistry and Western blotting. RESULTS: After treated with simvastatin for 72 hours, BMP-2 expression increased, while little BMP-2 expression could be observed in the control group. ALP activity also increased in a dose-dependent manner; t-test showed that ALP activity in the group which concentrations of simvastatin were 0.5 mumol/L (t = 2.35, P = 0.041), 1.0 mumol/L (t = 2.348, P = 0.041) had significant difference when compared with control group. CONCLUSION: Simvastatin lead to high expression of BMP-2 in bone marrow stromal cells, via the increased auto- or para-crine of BMP-2, and ALP activity increased. These may be parts of the mechanism on the anabolic osteogenetic effect of simvastatin.