west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Sciatic nerve" 28 results
  • GL UTEAL SCIATIC NERVE INJURY AND ITS TREATMENT

    OBJECTIVE To analysis the clinical characters of gluteal sciatic nerve injuries and investigate the treatment options. METHODS From October 1962 to June 1997, 190 patients with gluteal sciatic nerve injuries were adopted in this retrospective study. In these cases, the sciatic nerve injuries were caused by injection in 164 patients(86.32%), stab injury in 14 patients, pelvic fracture and hip dislocation in 11 patients, and contusion injury in 1 patient. Among them, 15 cases were treated by conservative method and the other 175 cases were operated. According to the observation during the operations, the injuries were occurred at the region of gluteal muscle in 146 cases, at the region of piriform muscle in 26 cases, and at the region of pelvic cavity in 3 cases. Then neurolysis was performed in 160 cases, epineurial neurorrhaphy in 12 cases and nerve grafting in 2 cases, and nerve exploration but no repair in 1 case. Late stage functional reconstruction of the foot and ankle was carried out in 23 cases. RESULTS One hundred and fifty-one patients were followed up 8.5 years in average. The occurrence of excellent and good nerve recovery was 56.95% and the occurrence of excellent and good functional reconstruction of late stage was 78.26%. CONCLUSION The gluteal sciatic nerve injury has since been challenging because of the tremendous difficulty in treatment and the poor outcome. The injury situation at the different region was closely related to the regional anatomy. According to this study, it is advised that the surgical treatment should be carried out actively. Neurolysis should be performed as soon as possible in the cases of injection injury. Epineurial neurorrhaphy should be performed in the cases of nerve rupture. In case of the gluteal sciatic nerve injury which caused by pelvic fracture or hip dislocation, the reduction and decompression is suggested in the early stage, and exploration and nerve repair is indicated in the late stage. The functional reconstruction of foot and ankle should be carried out in the late stage for the improvement of the limb function.

    Release date:2016-09-01 10:26 Export PDF Favorites Scan
  • EFFECT OF EXOGENOUS ERYTHROPOIETIN ON DENERVATED MUSCLE ATROPHY

    Objective To investigate the effect of exogenous erythropoietin (EPO) on the denervated muscle atrophy. Methods Twenty-four SD male rats, weighting 200-220 g were made the models of denervated gastrocnemius muscle after sciatic nerves were transected under the piriform muscle at the right lower leg, and were randomly divided into two groups (n=12). rhEPO (2 500 U/kg) was injected daily into the denervated gastrocnemius muscle in EPO group, and normal sal ine was injected into the denervated gastrocnemius muscle in control group. To observe the general state of health of the experimental animal, the muscle wet weight, the muscle cell diameter, the cross section area, the protein amount, thepercentage of the apoptotic muscle cells, and the Na+-K+-ATPase and Ca2+-ATPase activities were measured 2 and 4 weeks after operation. Results All experimental animals were survived during experiment without cut infection, and all animals could walk with pull ing the right knee. At 4 weeks after operation, 7 cases showed ulcer in the right heel, inculding 5 in the control group and 2 in the EPO group. At 2 and 4 weeks after operation, the muscle wet weight in EPO group was (885.59 ± 112.35) and (697.62 ± 94.74) g, respectively; in control group, it was (760.63 ± 109.05) and (458.71 ± 58.76) g, respectively; indicating significant differences between two groups (P lt; 0.01). The protein amount in EPO group was (77.37 ± 5.24) and (66.37 ± 4.87) mg/mL, respectivly;in control group, it was (65.39 ± 4.97) and (54.62 ± 6.32) mg/mL;indicating significant differences between two groups (P lt; 0.01). At 2 and 4 weeks after operation, the myofibrillar shapes were nearly normal in EPO group while there were muscle fiber atrophy, some collapse and obviously hyperblastosis between muscle bundle. There were significant differences in the muscle cell diameter and the cross section between two groups (P lt; 0.01). However, the percentage of the apoptotic muscle cells was 11.80% ± 1.74% and 28.47% ± 1.81% in control group, respectively, which was significantly smaller than that in EPO group (21.48% ± 2.21% and 55.89% ± 2.88%, P lt; 0.01). At 2 and 4 weeks after operation, Na+-K+-ATPaseand Ca2+-ATPase activities in EPO group were higher than those in control group (P lt; 0.01). Conclusion EPO can delay the denervated muscle atrophy.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON THE EFFECTS OF PEROXIDATION OF NEUROLIPID FOLLOWING CRUSHING INJURY OF PERIPHERAL NERVE

    In order to understand the change of free radicals in the course of injury and regeneration of nerve, the sciatic nerve of Wistar rat was crushed to, prepare the model of nerve injury and measured the content of Malondialdehyde (MDA) and superoxide dismutase (SOD) of the nerve. Thirty rats were used in this study. The sciatic nerve on one side was crushed, the contralateral sciatic nerve was served as control. According to the time of assessment (2,4,6,11,21 days after crushing), the rats were divided into 5 groups. The MDA concentration of the controlwas 19.65±0.27 and that of the crushing groups at different time were 21.25±0.36, 21.98±0.35, 22.77±0.38, 23.73±0.13, 23.92±0.44, respectively (nmol/100mg pro, x±s), while the SOD concentration of the control was 119.18±0.58 and that of the crushing groups at different time were 144.85±1.70, 136.14±1.71, 130.58±0.57, 126.41±0.98, 122.36±0.79, respectively (ug/mg pro, x±s), In the experimental groups, all the MDA concentrations were markedly higher than that of the control Plt;0.01, t-test) and tended to increase with the time passing by. The SOD concentrations in the experimental groups were also higher than that of the control Plt;0.01, t-test) and tended to decrease with the time passing on. The study suggested that after crushing or ligation of the nerve, the free radicals would increase.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • EXPERIMENTAL STUDIES ON EFFECTS OF SALIDROSIDE/COLLAGEN/ POLYCAPROLACTONE NERVE GUIDE CONDUITS FOR REPAIRING SCIATIC NERVE DEFECT IN RATS

    ObjectiveTo fabricate salidroside/collagen/polycaprolactone (PCL) nerve conduit composite and to investigate the effect of composite nerve conduits for repairing sciatic nerve defect. MethodsThe salidroside microspheres were prepared by W/O/W method, and the sustained release rate of microspheres was detected. The microspheres containing 10, 20, and 40 μg salidroside were mixed with collagen to prepare the nerve conduit core layer by freeze-drying method. The shell layer of collagen/PCL scaffold material was fabricated by electrospinning technology. The genipin cross-linked salidroside/collagen/PCL nerve conduit composite was prepared. The structure of nerve conduit was observed before and after cross-linked by scanning electron microscope. Thirty-eight Wistar rats were used to make the right sciatic nerve defect model of 15 mm in length, and randomly divided into groups A, B, C, D (n=9), and group E (n=2), then defect was repaired with the collagen/PCL conduit in group A, autologous nerve in group E, the 10, 20, and 40 μg/mL salidroside/collagen/PCL conduit in groups B, C, and D, respectively. The survival of rats was observed. The sciatic functional index (SFI) was evaluated at 1, 3, and 6 months after operation. At 6 months, the tissue of defect area was harvested for the general, electrophysiology, histological, and immunohistochemical[S-100 and peripheral myelin protein 0(P0)] staining observations. ResultsSalidroside microspheres showed burst release at 3 days, and then it tended to be stable at 13 days and lasted for 16 days, with a cumulative release rate of 76.59%. SEM showed that the disordered fiber of nerve conduit shell layer after crosslinking became conglutination, shrinkage, and density, and had void. The channels of core layer were clearly visible before and after crosslinking. The rats had no infection or death after operation. The SFI of group E was significantly higher than that of groups A, B, C, and D at 1, 3, and 6 months (P<0.05); it was significantly higher in groups B, C, and D than group A (P<0.05), but no significant difference was found among groups B, C, and D at 1 month (P>0.05); there was no significant difference in SFI among groups A, B, C, and D at 3 months (P>0.05); SFI was significantly higher in group C than groups A, B, and D and in groups A and B than group D (P<0.05), but no significant difference between groups A and B (P>0.05) at 6 months. In addition, no significant difference was shown among different time points in the other groups (P>0.05) except groups C and E at 1, 3, and 6 months (P<0.05). The general observation showed that good connection with the thick nerve in groups B and C, and connection with the fine nerves in groups A and D. The conduit materials obviously degraded. Nerve electrophysiological examination showed that the latency/conduction velocity of groups C and E were significantly lower than those of groups A, B, and D (P<0.05), but difference was not significant between groups C and E, and among groups A, B, and D (P>0.05). The histological observation showed that the nerve fiber tissue of groups B, C, and E was obviously more than that of groups A and D, and group C was similar to group E in the nerve fiber arrangement, and the core layer material of each group was completely degraded. Immunohistochemical staining showed that S-100 and P0 proteins expressed in all groups; and the expression level of groups B, C, and E was significantly higher than that of groups A and D, and gradually increased (P<0.05); difference in S-100 expression level was not significant between groups A and D (P>0.05), and P0 expression level of group A was significantly lower than that of group D (P<0.05). ConclusionSalidroside/collagen/PCL nerve conduit can promote sciatic nerve defect repair.

    Release date: Export PDF Favorites Scan
  • EFFECT OF RECOMBINANT CO-EXPRESSION ADENOVIRUS OF NERVE GROWTH FACTOR AND MYELIN ASSOCIATED GLYCOPROTEIN GENES ON RAT SCIATIC NERVE INJURY

    ObjectiveTo construct recombinant adenovirus expressing nerve growth factor (NGF) and myelin associated glycoprotein (MAG) (Ad-NGF-MAG) and to investigate its effect on repair and regeneration of sciatic nerve injury in rats. MethodsNGF and MAG gene sequences were cloned into shuttle plasmid pCA13 of adenovirus type 5. After packed in HEK293 cells, the recombinant Ad-NGF-MAG underwent sequence and identification. Thirty-two male Sprague Dawley rats were randomly divided into 4 groups (n=8): control group (normal control), adenovirus vector group (Ad group), Ad-NGF group, and Ad-NGF-MAG group. The sciatic nerve injury model was established by transection of the right sciatic nerve; then, the empty adenovirus vector, Ad-NGF, and Ad-NGF-MAG were injected into the gastrocnemius muscle of the affected limb at a dose of 1×108 PFU every other day for 3 times in Ad group, AdNGF group, and Ad-NGF-MAG group, respectively. The right sciatic nerve was exposed only, and then the incision was closed in the control group. The sciatic nerve function index (SFI) was measured, and neuro-electrophysiology was observed; mRNA and protein expressions of NGF and MAG were detected by RT-PCR and Western blot; and histological examination was performed at 31 days after operation. ResultsRecombinant adenovirus vectors of Ad-NGF and Ad-NGF-MAG were constructed successfully. All rats survived and incision healed by first intension. The SFI, nerve conduction velocity, evoked potential amplitude, and latent period of Ad-NGF-MAG group were significantly better than those of Ad group and Ad-NGF group (P < 0.05). MAG mRNA and protein expressions of Ad-NGF-MAG group were the highest in all the groups (P < 0.05). The expressions of NGF mRNA and protein increased in Ad-NGF group and AdNGF-MAG group when compared with control group and Ad group (P < 0.05). Histological examination showed that the nerve had good continuity in control group; nerve fibers disarranged in Ad group; neurons connections formed in some nerve fibers of Ad-NGF group, but nerve fibers arrange disorderly; and the growth of the nerve were ordered and wellstructured in Ad-NGF-MAG group. ConclusionAd-NGF-MAG can effectively promote the growth of the nerve and inhibit the form of abnormal branches, facilitating the repair of sciatic nerve injury in rats.

    Release date: Export PDF Favorites Scan
  • EFFECT OF BASIC FIBROBLAST GROWTH FACTOR ON REPAIRING TRANSECTED SCIATIC NERVE IN RATS

    OBJECTIVE To investigate the effects of basic fibroblast growth factor(bFGF) on repairing transected sciatic nerves in rats. METHODS The animal models of the transected sciatic nerve of 40 SD rats were established, which divided into 4 groups: normal saline (NS) group, nerve growth factor (NGF) group, bFGF group and normal control group. The epineurium of the transected sciatic nerve was sutured under microscope, then bFGF or NGF was dropped into local sites and injected intramuscularly once a day for 30 days after operation. Functional repair for the transected sciatic nerves was studied by nerve conductive velocity (NCV) and sciatic nerve function index (SFI). RESULTS As a criterion, the level of the normal control group was regarded as zero, SFI of NS group, NGF group and bFGF group were -114.30 +/- 10.34, -70.50 +/- 11.01, -50.45 +/- 7.82 respectively at 1 month after operation, and they were -54.96 +/- 16.46, -35.21 +/- 10.80, -27.53 +/- 11.23 respectively in 3 months after operation. NCV of bFGF group was significantly faster than NS group and NGF group. CONCLUSION bFGF can significantly promote the functional repair of injured peripheral nerve, and its effects are better than NGF.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • INDUCTING DIFFERENTIATION EFFECT OF SCIATIC NERVE EXTRACTS ON RABBIT ADIPOSE-DERIVED STEM CELLS IN VITRO

    ObjectiveTo study the inducting differentiation effect of the sciatic nerve extracts on rabbit adipose-derived stem cells (ADSCs) in vitro. MethodsThe ADSCs were isolated from 2 healthy 4-month-old New Zealand rabbits (weighing, 2.0-2.5 kg) and cultured to passage 3, which were pretreated with 10 ng/mL basic fibroblast growth factor (bFGF) for 24 hours before induction. Then the induction media containing the extracts of normal sciatic nerve (group B) and injured sciatic nerve at 3, 7, and 14 days (group C, group D, and group E) were used, and D-Hank was used in group A as blank control group. The morphological changes of the cells were observed. At 7 days of induction, the gene expressions of neuron-specific enolase (NSE), nestin (NES), and S-100 were detected by real-time fluorescent quantitative PCR. The S-100 protein expression was tested by immunocytochemical staining. ResultsAt 4 days after induction, some ADSCs of groups C, D, and E showed the morphology of Schwann-like cells or neuron-like cells, the change of group D was more obvious; and the ADSCs of group A and B had no obvious change, which were still spindle. The S-100 immunocytochemical staining showed positive expression in groups C, D, and E (more obvious in group D) and negative expression in groups A and B. The gene expression of S-100 displayed time-dependent increases in groups C and D, which was significantly higher than that of groups A, B, and E (P<0.05), but no significant difference was found between groups C and D (P>0.05). The gene expression of NSE showed the same tendency to S-100, which reached the peak in group D; the gene expression of NSE in groups D and E was significantly higher than that of groups A, B, and C (P<0.05), and groups D and E showed significant difference (P<0.05). However, the gene expression of Nestin showed no significant difference among different groups (P>0.05). ConclusionThe ADSCs can be induced to differentiate into Schwann-like cells or neuron-like cells with sciatic nerve extracts; and the early stage (3-7 days) after injury is the best time for stem cell transplantation.

    Release date: Export PDF Favorites Scan
  • EFFECT OF TETRAMETHYLPYRAZINE ADDED TO VITRIFICATION SOLUTION ON PERIPHERAL NERVE ALLOGRAFTS REGENERATION

    Objective To investigate the effect of tetramethylpyrazine (TMP) with a certain concentration added to vitrification solution on peripheral nerve allografts regeneration. Methods Forty-eight healthy clean SD male rats were selected as donors, and 96 healthy clean Wistar male rats as recipients, all rats being 3 months old and weighing 200-250 g. The sciatic nerves segments of 15 mm were removed from the donors, then randomly divided into 4 groups according to vitrificationsolution containing TMP. No TMP was used in group A as the control group; 100 mg/L, 200 mg/L and 400 mg/L TMP were used in group B, group C and group D, respectively. Then them were cryo-preserved at — 196 ℃ for 3 weeks. Nerve defect of 10 mm in length was made in the sciatic nerves of recipients. After rewarming, the allografts were transplanted to the corresponding rats. The gross appearance, the morphological and electrophysiological changes, the image analysis of axons and motor end-plate were detected at 4, 8, 12 and 16 weeks. Results All rates survived to the end of the experiment. The adhesion and edema of allografts in group A and group B were obvious 4 weeks after operation; then adhesion and edema was obvious in group A and were improved in the other groups 8 weeks after operation. Adhesion was observed in groups A and B; no adhesion was observed in groups C and D at 12 weeks. The number of regeneration nerve, the latent, the ampl itude, the nerve conduction velocity, the medullary sheath/μm2, the medullary sheath density/μm2 and the image analysis of axons and motor end-plate in groups A and B were significantly lower than those in groups C and D (P lt; 0.01); and there were no significant differences between groups C and D (P gt; 0.05). The observation of transmission electron microscope showed that medullated nerve fibers and myel in sheath of groups C and D were thicker than groups A and B, layers of groups C and D were clear. Conclusion The vitrification solution with 200 mg/L tetramethylpyrazine has protective effect on regeneration of peripheral nerve allografts.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • TIME LIMIT OF REPAIRING OLD SCIATIC NERVE DEFECT IN RATS

    Objective To investigate the time l imit of repairing old sciatic nerve defect in rats and observe the repair effect of autogenous nerve transplantation on old sciatic nerve defect in rats. Methods Thirty-six SD rats of clean grade wererandomized into 6 groups (n=6 per group). The animal model of nerve defect was made by transecting left sciatic nerve at the mid-thigh level. For groups A1, B1 and C1, defects were repaired by the contralateral autogenous nerve transplantation 1, 3 or 6 months after nerve damage and for the control groups of A2, B2 and C2, defects were not repaired. After operation, the gait, toe skin and leg muscle were examined weekly. Three months after autograft, a combination of electrophysiology examination, fluoro gold (FG) retrograde tracing and histological assessment including l ight microscopy, TEM was util ized to investigate the nerve functional recovery. Results Lameness and foot skin ulcers were observed in each group after nerve damage. At 2 months after autograft, such denervation symptoms were only improved in groups A1 and B1. At 3 months after autograft, the motor conduction velocity was (21.84 ± 6.74), (20.02 ± 4.17) and (16.09 ± 8.21) m/s in groups A1, B1 and C1, respectively, showing no statistically significant difference between them (P gt; 0.05). The ampl itude of compound muscle action potential (CAMP) was (12.68 ± 4.38), (9.20 ± 3.43) and (1.22 ± 0.39) mV in groups A1, B1 and C1, respectively, indicating significant differences between groups A1, B1 and group C1 (P lt; 0.05). No CAMP was evident in groups A2, B2 and C2. FG retrograde tracing conducted 3 months after autograft showed that the positive cells were most common in group A1 with big soma, mild in group B1 and lest in group C1 with smallest soma. Gastrocnemius Masson staining showed that the fiber morphology of gastrocnemius in groups A1 and B1 was close to normal, while the rest 4 groups had an obvious atrophy of muscle fiber. The fiber cross-section area was (340.73 ± 118.46), (299.88 ± 119.75), (54.33 ± 53.43), (78.60 ± 51.38), (65.62 ± 25.36), and (40.93 ± 28.22) μm2 in groups A1, B1, C1, A2, B2 and C2, respectively, indicating a significant difference between groups A1, B1 and groups C1, A2, B2 (P lt; 0.05). Neurohistology observation showed that more regenerated nerve fibers were observed in group A1 and B1, but less in group C1. The myel in sheath was thick in groups A1 and B1, while it was thin in group C1. Only SCs and hyperplastic collagen fiber were found in groups A2, B2 and C2. Conclusion Autogenous nerve transplantation is capable of repairing 1- and 3- month sciatic nerve defect to some degree in rat, but repair effect is not obvious on 6-month sciatic nerve defect in rats.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • STUDY ON ISOLATION AND PURIFICATION OF PRIMARY SCHWANN CELLS FROM DIFFERENT PARTS OF NERVE TISSUE IN RATS/

    Objective To establ ish the methods to get high activity, high purity, and adequate Schwann cells (SCs), and to provide sufficient seed cells for the peripheral nerve repair. Methods Six 5-day-old, male or female, Sprague Dawley rats were selected and the sciatic nerve (control group) and dorsal root gangl ion (DRG) (ex perimental group) were harvested.Then the sciatic nerves and DRG were digested by co-enzyme and dispersed by medium containing serum to isolate SCs. Freshlyisolated SCs from rats were cultured, purified and subcultured. The 1st generation of SCs were chosen to draw the growth curve of SCs by the counting method and to detect the prol iferation of SCs by MTT assay at 8 days of culture, the purity of SCs by immunocytochemistry of anti-S-100 and the brain-derived neurotrophic factor (BDNF) concentration by ELISA. Results A total of 36-43 DRGs could be obtained in each rat. The number of obtained single SC in experimental group [(7.5 ± 0.6)× 106] was significantly higher than that in control group [(3.5 ± 0.4)× 106 ] (t=13.175, P=0.000). SCs reached logarithm prol iferation phase at 3 days. With time, the cell number and the prol iferation absorbance (A) value of 2 groups all showed upward trend. The number and A value of experimental group were significantly higher than those of control group (P lt; 0.05). The SCs purity of experimental group (92.08% ± 3.45%) was significantly higher than that of control group (77.50% ± 3.57%) (t=6.689, P=0.001).The concentrations of BDNF at 3 days and 5 days in experimental group were significantly higher than those of control group (P lt; 0.05). Conclusion The sufficient amount, high purity, and viabil ity of SCs from DRGs can meet the needs of studies on peripheral nerve repairment.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content