west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Schwann cell" 46 results
  • RESCUE OF MOTONEURON FROM BRACHIAL PLEXUS NERVE ROOT AVULSION INDUCED CELL DEATH BY SCHWANN CELL DERIVED NEUROTROPHIC FACTOR

    OBJECTIVE To study the protective effects of Schwann cell derived neurotrophic factor (SDNF) on motoneurons of spinal anterior horn from spinal root avulsion induced cell death. METHODS Twenty SD rats were made the animal model of C6.7 spinal root avulsion induced motoneuron degeneration, and SDNF was applied at the lesion site of spinal cord once a week. After three weeks, the C6.7 spinal region was dissected out for motoneuron count, morphological analysis and nitric oxide synthase (NOS) enzyme histochemistry. RESULTS 68.6% motoneurons of spinal anterior horn death were occurred after 3 weeks following surgery, the size of survivors was significantly atrophy and NOS positive neurons increased. However, in animals which received SDNF treatment, the death of motoneurons was significantly decreased, the atrophy of surviving motoneurons was prevented, and expression of NOS was inhibited. CONCLUSION SDNF can prevent the death of motoneurons following spinal root avulsion. Nitric oxide may play a role in these injury induced motoneuron death.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • IN VITO STUDY OF THE CULTURE MORPHOLOGICAL OBSERVATIONS AND BIOLOGICAL PROPERTIES OF HUMAN AND RABBIT SCHWANN CELLS

    Schwann cells (SC) play an important role in nerve regeneration. The cultures of both human and rabbit SC (gt;99%) were obtained, and were separately derived from the sciatic nerve of the human fetus and the rabbit respectively by "the method of reexplantation". In addition, the cryostore and resuscitation of SC were carried out, and the resuscitated cells could retain their growth properties.

    Release date:2016-09-01 11:38 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON THE GROWTH OF NERVE AXON ENHANCED BY CHITIN REGENERATION CHAMBER WITH CRUDE SCHWANN CELLS

    The biomaterial, chitin, was used to create a nerve regeneration chamber for bridging healing experiment of sciatic nerve of rats having a defect of 12mm. The crude Schwann cells were introduced into the chambers in one group and the other group had no crude Schwann cells in the chamber and the results of the two groups were compared with those having the nerve defects bridged with skeletal muscles. The specimens were observed by macroscopic, microdissection. electrophysiologic testing, HRP retrograde labelling, histologic and electron microscopic examinations at 4, 8, and 12 weeks after the operation. The results showed that atthe 8th week, the regenerating nerve fibers from the cephalad ends had united with the fibers of the caudal ends of the divided nerves either the crude Schwanneclls were introduced or not, but the morphology of the regenerating nerve, the way of regeneration and the recovery of the function of the extremities were far superior in the group that no cruds Schwann cells had been introduced than those with crude Schwann cell introduced and those bridged by skeletal muscles.

    Release date:2016-09-01 11:13 Export PDF Favorites Scan
  • RESEARCH ADVANCE OF DIFFERENTIATION OF INDUCED PLURIPOTENT STEM CELLS INTO Schwann CELLS IN VITRO

    ObjectiveTo review the research advance of differentiation of induced pluripotent stem cells (iPS) into Schwann cells in vitro in recent years. MethodsRelated literatures on differentiation of iPS into Schwann cells in vitro at present were consulted, the induction methods of iPS differentiating into Schwann cells in vitro were summarized, and the differentiated cells were identified and detected. ResultsThe research results indicate that iPS can differentiate into Schwann cells. So far, the iPS have to differentiate into neural crest cells or neural crest stem cells firstly, and then differentiate into Schwann cells. S100-β and glial fibrillary acidic protein (GFAP) are recognized as the marker of Schwann cells. The evidence of generating Schwann cells was that the neural crest cells or neural crest stem cells were labelled by p75+, HNK1+, or nestin+ before differentiation, and by S100-β+ and GFAP+ after induction. ConclusionDespite the increasing reported studies of Schwann cells from iPS, there have been few successful induction methods, so this field of cytology needs further study.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON SCHWANN CELLS CYTOPLASMIC NEUROTROPHIC PROTEINS TO IMPROVE THE REGENERATION OF THE INJURED PERIPHERAL NERVE IN VIVO

    OBJECTIVE: To study the effects of Schwann cell cytoplasmic derived neurotrophic proteins (SDNF) on the regeneration of peripheral nerve in vivo. METHODS: Ninety adult SD rats were chosen as the experimental model of degenerated muscle graft with vascular implantation bridging the 10 mm length of right sciatic nerve. They were divided randomly into three groups, 30 SD rats in each groups. 25 microliters of 26 ku SDNF (50 micrograms/ml, group A), 58 ku SDNF (50 micrograms/ml, group B) and normal saline(group C) were injected respectively into the proximal, middle and distal part of the degenerated muscle grafts at operation, 7 and 14 days postoperatively. The motorial function recovery assessment was carried out every 15 days with the sciatic nerve function index(SFI) after 15 days to 6 months of operation. Histological and electrophysiological examination of regenerating nerve were made at 1, 3 and 6 months postoperatively. RESULTS: There were significant statistic differences between the both of experimental groups(group A and B) and control group(group C) in the respects of the histological, electrophysiological examination and SFI(P lt; 0.01). CONCLUSION: The 26 ku SDNF and 58 ku SNDF can improve the regeneration of the injured peripheral nerve in vivo.

    Release date:2016-09-01 10:28 Export PDF Favorites Scan
  • EFFECT OF SCHWANN CELLS ON DIFFERENTIATION OF RAT BONE MARROW MESENCHYMAL STEM CELLS AT DIFFERENT AGES

    Objective Bone marrow mesenchymal stem cells (BMSCs) are multi potent and thus are able to differentiate into a number of different cell types under certain culture condition. However, the effect of age on the differentiation remains unknown. To explore the effect of the microenvironment formed by Schwann cells (SCs) on BMSCs differentiation into neurons and ol igodendrocytes in rats at different ages in vitro. Methods SCs were extracted and purified from the distal sciatic nerves of neonatal Wistar rats. BMSCs were isolated from bone marrow of Wistar rats (aged 1 month, 6 months, and 12 months, respectively) and cultured in vitro. The cells were identified by immunofluorescent staining. The BMSCs at passage 2 were labeled by PKH26 and cocultured with SCs at passage 3 in equal proportions in two layer Petri dish. According to the BMSCs from the rats at different ages, experiment was divided into 3 groups: SCs were cocultured with 1-month-old rat BMSCs (group A), 6-month-old rat BMSCs (group B), and 12-month-old rat BMSCs (group C), respectively. The morphological changes of cocultured BMSCs were observed by inverted phase contrast microscope, the expressions of neuron-specific enolase (NSE) and myel in basic protein (MBP) in the cocultured BMSCs were tested by immunofluorescent staining, and the expression of neuregul in 1 (NRG1) was detected by ELISA method. Results SCs and BMSCs were isolated and cultured successfully. The identification of SCs showed positive expression of S-100 and BMSCs showed positive expressions of CD29, CD44, and CD90. At 7 days after coculture, the BMSCs in group A began retraction, and became round or tapered with the processes and had a nerve cells or ol igodendrocytes-l ike morphology, but most BMSCs in groups B and C showed no obvious morphological changes under inverted phase contrast microscope. Immunofluorescent staining showed that the positive expression rates of NSE in groups A, B, and C were 22.39% ± 2.86%, 12.89% ± 1.78%, and 2.69% ± 0.80%, respectively, and the positive expression rates of MBP in groups A, B, and C were 16.13% ± 2.39%, 6.33% ± 1.40%, and 0.92% ± 0.17%, respectively. There were significant differences in terms of NSE and MBP positive expression rates among 3 groups (P lt; 0.05). ELISA analysis showed that NRG1 in the supernatant of group A was increased after coculture in a time-dependent manner. At 6, 9, and 12 days of coculture, NRG1 content was higher in group A than in groups B and C, and in group B than in group C, showing significant differences (P lt; 0.05). Conclusion The microenvironment formed by SCs can promote BMSCs differentiation into neurons and ol igodendrocytes, but the differentiation capabil ity of BMSCs decreases with aging, and the variety of growth factors secreted by SCs is l ikely important factors that induce the differentiation of BMSCs into neurons and ol igodendrocytes.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • AN EFFECT OF THE TWO-STEP FREEZING METHOD ON THE SCHWANN CELL BIOLOGICAL ACTIVITY IN THE PERIPHERAL NERVE OF THE RAT

    Objective To investigate an effect of differenttemperature cryopreservation of the two-step freezing method on the Schwann cell biological activity in the peripheral nerve of the rat. Methods Eighty femaleSD rats were randomly divided into 8 groups of 10 rats each. One was the control group and 7 were the experimental groups. Two 2-cm-long sciatic nerve segments were respectively taken from both legs of each rat. In the control group, the sciatic nerve segments did not undergo the treatment of cryopreservation; however, in the 7 experimental groups, the sciatic nerve segments respectively underwent the different temperature cryopreservation of the twostep freezing method at -20℃, -30℃, -40℃, -50℃, -60℃, -70℃ and -80℃. The sciatic nerve segments were cryopreserved for 2 hours,and then placed into the liquid nigrtrogen at -196℃. After 48 hours of storage,the nerve segments werethawed quickly in the 37℃ water bath box for 1 minute. Then, the sciatic nerve segments each group were harvested. The cells of the sciatic nerve were incubated with Calcein-AM for 15 minutes. The average fluorescence intensity of the cells was measured by the flow cytometry. The nerve fibers were also incubated with Calcein-AM for 15 minutes. The fluorescence intensity of the cells was analyzed by the confocal fluorescence microscope. The Schwann cell biological activity intensity was measured. Results The fluorescence intensity in the -40℃ group was the best and the Schwann cell biological activity in this group was thebest among all the groups(P<0.01). The fluorescence intensity in the 8 groups measured by the flow cytometry was as follows:242.522 0±9.568 4 in the control group,168.677 0±10.207 0 in the -20 ℃ group,214.992 0±8.329 1 in the -30 ℃ group,235.526 0±9.280 5 in the -40 ℃ group,222.434 0±8.515 5 in the -50 ℃ group,217.409 0±9.515 7 inthe -60 ℃ group,132.376 0±13.459 7 in the -70 ℃ group, and 108.132 0±16.033 1 in the -80 ℃ group. The fluorescence intensity detected by the confocal fluorescence microscope was as follows:143.700 0±5.567 8 in the control group,119.700 0±5.161 5 in the -20 ℃ group,121.300 0±4.347 4 in the -30 ℃ group,700 0±5.012 2 in the -40 ℃ group,121.000 0±4.546 1 in the -50 ℃ group,118.400 0±4.9261 in the -60 ℃ group,81.200 0±5.116 4in the -70 ℃ group,and 79. 000 0±5.716 4 in the -80 ℃ group. Conclusion The Schwann cell biological activity treated by the two-step freezing methodcan be preserved and the activity is cryopreserved best at -40 ℃.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • Effects of neonatol rabbit Schwann cells on promoting repair of optic nerve contusion in adult rabbits

    Objective To study the effects of neonatol rabbit Schwann cells(SC) on repair of optic contusion in adult rabbits. Methods 24 h after the adult rabbit optic nerves was contused,0.1 ml of SC suspension (group A) and saline water (group B) were injected into the vitreous of injured eyes respectively.All the animals were studied by retinal ganglion cell (RGC) and axon counting,flash visual evoked potential (FVEP) tests at various intervals after injury. Results At the 4th week after injury,the number of RGC was (19.89plusmn;3.79)/mm in group A and (12.67plusmn;4.12)/mm in group B,and the density of axons was (94.569plusmn;793)/mm2 in group A and (36.085plusmn;285)/mm2 in group B.There was dramatical difference between group A and B (Plt;0.01).The amplitude of FVEP wave of group A increased from 48% to 88% on the 3rd day after injury,and still dept 78% at the 8th week and group A was significantly higher than group B at various intervals (Plt;0.01). Conclusion SC are effective in promoting the repair of optic nerve contusion by increasing the survival rate of RGC,rescuing axons from degeneration,and dramatically promoting the function of the optic nerve. (Chin J Ocul Fundus Dis,2000,16:91-93)

    Release date:2016-09-02 06:05 Export PDF Favorites Scan
  • FUNCTIONAL EVALUATION OF CHEMICALLY EXTRACTED ACELLULAR NERVE ALLOGRAFT SUPPLEMENT WITH DIFFERENT TISSUES OF SCHWANN CELLS FOR PERIPHERAL NERVE REGENERATION

    Objective To construct chemically extracted acellular nerve allograft (CEANA) with Schwann cells (SCs) from different tissues and to compare the effect of repairing peripheral nerve defect. Methods Bone marrow mesenchymal stem cells (BMSCs) and adi pose-derived stem cells (ADSCs) were isolated and cultured from 3 4-week-old SD mice with weighing 80-120 g. BMSCs and ADSCs were induced to differentiated MSC (dMSC) and differentiated ADSC (dADSC) in vitro.dMSC and dADSC were identified by p75 protein and gl ial fibrillary acidic protein (GFAP). SCs were isolated and culturedfrom 10 3-day-old SD mice with weighing 6-8 g. CEANA were made from bilateral sciatic nerves of 20 adult Wistar mice with weighing 200-250 g. Forty adult SD mice were made the model of left sciatic nerve defect (15 mm) and divided into 5 groups (n=8 per group) according to CEANA with different sources of SCs: autografting (group A), acellular grafting with SCs (5 × 105) (group B), acellular grafting with dMSCs (5 × 105) (group C), acellular grafting with dADSCs (5 × 105) (group D), and acellular grafting alone (group E). Motor and sensory nerve recovery was assessed by Von Frey and tension of the triceps surae muscle testing 12 weeks after operation. Then wet weight recovery ratio of triceps surae muscles was measured and histomorphometric assessment of nerve grafts was evaluated. Results BMSCs and ADSCs did not express antigens CD34 and CD45, and expressed antigen CD90. BMSCs and ADSC were differentiated into similar morphous of SCs and confirmed by the detection of SCs-specific cellsurface markers. The mean 50% withdrawal threshold in groups A, B, C, D, and E was (13.8 ± 2.3), (15.4 ± 6.5), (16.9 ± 5.3), (16.3 ± 3.5), and (20.0 ± 5.3) g, showing significant difference between group A and group E (P lt; 0.01). The recovery of tension of the triceps surae muscle in groups A, B, C, D, and E was 87.0% ± 9.7%, 70.0% ± 6.6%, 69.0% ± 6.7%, 65.0% ± 9.8%, and 45.0%± 12.1%, showing significant differences between groups A, B, C, D, and group E (P lt; 0.05). No inflammatory reactionexisted around nerve graft. The histological observation indicated that the number of myel inated nerve fiber and the myel in sheath thickness in group E were significantly smaller than that in groups B, C, and D (P lt; 0.01). The fiber diameter of group B was significantly bigger than that of groups C and D (P lt; 0.05) Conclusion CEANA supplementing with dADSC has similar repair effect in peripheral nerve defect to supplementing with dMSC or SCs. dADSC, as an ideal seeding cell in nerve tissue engineering, can be benefit for treatment of peripheral nerve injuries.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
  • APPLICATION PROGRESS OF SEED CELLS IN TISSUE ENGINEERED NERVE

    ObjectiveTo summarize the applications of Schwann cells (SCs), stem cells, and genetically modified cells (GMCs) in repair of peripheral nerve defects. MethodsThe literature of original experimental study and clinical research related with SCs, stem cells, and GMCs was reviewed and analyzed. ResultsSCs play a key role in repair of peripheral nerve defects; the stem cells can be induced to differentiate into SCs, which can be implanted into nerve conduits to promote the repair of peripheral nerve defect; genetically modified technology can enhance the function of SCs and different stem cells, which has been regarded as a new option for tissue engineered nerve. ConclusionAlthough great progress has been made in tissue engineered nerve recently, mostly limited to the experimental stage. The research of seed cells in application of tissue engineered nerve need be studied deeply.

    Release date: Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content