Objective To investigate the inhibitory effects of RNA interference (RNAi) expression vector on the expression of survivin in pancreatic cancer cell PANC-1. Methods The protein and mRNA expressions of survivin were examined with immunofluorescence and RT-PCR. The survivin gene was cloned into the T-vector and sequenced. The RNAi expression vectors targeting survivin, named si-svv-1 and si-svv-2 respectively according to whether they harbored a mutation or no mutation, were constructed and transfected into PANC-1 cells with liposome. The expression of survivin mRNA was detected with RT-PCR. Apoptosis of PANC-1 cells was analyzed with DNA ladder and FACS. Results There was a high degree expression of survivin in PANC-1 cells. The expression of survivin was not inhibited by RNAi expression vectors si-svv-1, but inhibited about (72.43±8.04)% by si-svv-2 and the apoptosis rate of PANC-1 cells increased to (12.36±1.44)% after 72 h. Conclusion The RNAi expression vector can effectively inhibit the expression of survivin in pancreatic cancer cell PANC-1 cells and induce the apoptosis in PANC-1 cells.
Objective To construct vectors that express phosphatidylinositol-3-kinase, catalytic, beta polypeptide (PIK3cb) shRNA in eukaryon plasmid catalyzed by PI3K in rat, then test their effects on intimal hyperplasia in transplanted vein graft. Methods One hundred and fifty SD rats were randomly divided into six groups (n=25, in each group): blank (25% Pluronic F-127), shRNA-1, shRNA-2, 1/2 (shRNA-1+shRNA-2), negative control (pGenesil-1 scramble shRNA) and positive control (wortmannin) group. The jugular vein in rats were interpositioned autologously into the common carotid artery. shRNA and 25% Pluronic F-127 were mixed and coated around the transplanted vein in three PIK3cb shRNA groups. Every 5 samples were removed according to the time point (1, 3, 7, 14 and 28 days after operation), respectively. The thickness of intima and neointima area were calculated and analyzed by computer system. The PCNA expression was detected by Western blot and SP immunohistochemistry. Results The intimal thickness of three PIK3cb shRNA groups were lower than those in the blank group and negative control group on day 3, 7, 14, 28 after operation (P<0.05); The neointima area in three PIK3cb shRNA groups (except shRNA-2 group on day 3, 7) began to decrease significantly from day one (P<0.05). The protein expression of PCNA in three PIK3cb shRNA groups on day 3 after operation were decreased compared with blank group and negative group (P<0.05). The percentage of the PCNA positive cells area in three PIK3cb shRNA groups were significantly lower than those in blank group and negative control group in each time point (Plt;0.05). There were no significant differences between blank and negative control group in different time points (Pgt;0.05). Conclusion The PIK3cb shRNA can effectively inhibit the proliferation of vascular smooth muscle cell, which may provide a new gene therapy for the prevention of vein graft restenosis after bypass grafting.
ObjectiveTo explore the effect of DDX46 silencing on growth and apoptosis in esophageal squamous cell carcinoma cell TE-1 by the shRNA. MethodsThe relative expression of DDX46 mRNA in TE-1 cells was detected by real-time quantitative polymerase chain reaction (qRT-PCR) and compared with immortalized human esophageal squamous cell Het-1A. DDX46 shRNA-expressing lentivirus was applied to silence DDX46 (experimental group), and non-silencing control lentivirus was added (control group) with a multiplicity of infection of 5 in TE-1 cells. In both groups, cell growth was monitored using high content screening, cell colony-forming capacity was measured by colony formation assay, cell apoptosis were determined by flow cytometry. Further, the Stress and Apoptosis Signaling Antibody Array Kit was used to detect the changes of signaling molecules in TE-1 cells after DDX46 knockdown. ResultsCompared with the control group, cell counting after DDX46 silencing showed that TE-1 cell growth was significantly inhibited (P<0.001). Colony formation assay showed that cell colony-forming capacity was significantly inhibited (P<0.01). Annexin V-APC flow cytometry showed a significant increase in apoptosis (P<0.001). In PathScan® Antibody Array, the expression levels of Akt (Ser473, phosphorylation) and IκBα (Total, N/A) significantly decreased (P<0.01), and the expression of Caspase-3 (Asp175, cleaved) increased (P<0.05). ConclusionDDX46 is overexpressed in TE-1 cells. Targeted gene silencing of DDX46 inhibits cell growth, and induces cell apoptosis. DDX46 silencing probably by negative regulation of Akt/NF-κB signaling pathway, to play a role in inhibiting TE-1 cells growth and inducing apoptosis.
Objective To investigate the influence of RNA interference targeting c-Jun gene on the proliferation of rat vascular smooth muscle cells (VSMCs). Methods The experiment was performed with c-Jun siRNA (c-Jun siRNA group), control reverse sequence siRNA (control siRNA group) or no siRNA (control group). VSMCs were transfected with siRNA targeting c-Jun gene by liposome. Effects of c-Jun siRNA on mRNA and protein expressions of c-Jun were examined by RT-PCR analysis and Western blot respectively. MTT test and 3H-TdR incorporation were used to detect VSMCs proliferation. Cell cycle analysis of VSMCs in vitro was determined by flow cytometer. Results The expression levels of mRNA and protein of c-Jun in c-Jun siRNA group were significantly lower than those in control group (P<0.05, P<0.01). There was no significant difference between control group and control siRNA group (Pgt;0.05). Proliferation activity of VSMCs decreased significantly in c-Jun siRNA group compared with that in control group (P<0.05) and VSMCs was blocked in the G0/G1 phase of cell cycle significantly (P<0.05). There was no significant difference between control group and control siRNA group (Pgt;0.05). Conclusion c-Jun gene silenced by RNA interference can inhibit VSMCs proliferation effectively in vitro.
Objective According to heparanase’s gene sequence of GenBank, to construct heparanase gene-targeted small interfering RNA (siRNA) and its expression vector and to observe its interference effect on the expression of heparanase gene in human malignant breast cancer MDA-MB-231 cell. Methods Heparanase gene-targeted hairpin siRNA was designed, two complementary oligonucleotide strands were synthesized and inserted into pGPU6/GFP/Neo vector, which was identified by sequence identify. Human malignant breast cancer MDA-MB-231 cell was transfected with the constructed vector with lipofectamine method. Fluorescence photograph was taken. Real-time PCR (RT-PCR) was performed to evaluate the level of heparanase mRNA expression. Results Four kinds of heparanase gene-targeted hairpin siRNA were designed, then were inserted into pGPU6/GFP/Neo vector after annealing. Sequencing indicated the construction was successful. Fluorescence photographs showed MDA-MB-231 cells were transfected successfully. RT-PCR showed that heparanase mRNA expression levels were inhibited significantly (Plt;0.05). Conclusion The heparanase gene-targeted siRNA and its vector are successfully constructed and MDA-MB-231 cells are transfected successfully. Heparanase mRNA expression levels are significantly inhibited by siRNA vector, which provide a new method for the treatment of cancer.
【Abstract】 Objective The seed cells source is a research focus in tissue engineered cartilage. To observe whether the post-RNA interference (RNAi) chondrocytes could be used as the seed cells of tissue engineered cartilage. Methods Chondrocytes were separated from Sprague Dawley rats. The first passage chondrocytes were used and divided into 2 groups: normal chondrocytes (control group) and post-RNAi (experimental group). Normal and post-RNAi chondrocytes were seeded into chitosan/gelatin material and cultured in vitro to prepare tissue engineered cartilage. The contents of Aggrecan and Aggrecanase-1, 2 were measured by HE and Masson staining, scanning electron microscope (SEM), and RT-PCR. Results The histological results: no obvious difference was observed in cell number and extracellular matrix (ECM) between 2 groups at 2 weeks; when compared with control group, the secretion of ECM and the cell number increased in experimental group with time. The RT-PCR results: the expression of Aggrecan mRNA in experimental group was significantly higher than that in control group (P lt; 0.05); but the expressions of Aggrecanase-1, 2 mRNA in experimental group were significantly lower than those in control group (P lt; 0.05). The SEM results: the cell number in experimental group was obviously more than that in control group, and the cells in experimental group were conjugated closely. Conclusion The post-RNAi chondrocytes can be used as the seed cells for tissue engineered cartilage, which can secrete more Aggrecan than normal chondrocytes. But their biological activities need studying further.
ObjectiveTo explore the inhibition effect of Cysteine-rich 61(CCN1;Cyr61) specific siRNA expression vector on RNV in a mouse model of oxygen-induced retinopathy (OIR). MethodsOne hundred and twenty healthy C57BL/6J mice were chosen and randomly divided into the experimental group and control group, with 60 mice in each group. The experimental group was intravitreously injected with CCN1siRNA recombinant plasmids. The control group was injected with vector plasmids. Adenosine diphosphate-ase stained retina flat-mounts was performed to assess the retinal vascular profiles, retinal section with HE staining was applied to count the number of new vascular cell nuclei and the protein and mRNA expression of CCN1 and vascular endothelial growth factor (VEGF) were detected by immunohistochemistry, Western blot and Real-time RT-PCR. ResultsCompared with control group, regular distributions, good branches and reduced density of retinal neovascularization were observed in the experimental group. The number of nucleus of vascular endothelial cells breaking through the inner limiting membrane was obviously less in the experimental group than that in the control group (t=8.756, P < 0.05). The expression of CCN1 and VEGF were obviously decreased in the experimental group compared with the control group (all P < 0.05). ConclusionThe development of RNV of ROP can be markedly inhibited by RNA interference targeting CCN1, and CCN1siRNA may provide an effective method for preventing vascular proliferative retinopathy.
ObjectiveTo observe the influence of down-regulation of HtrA1 expression by small interfering RNA on light-injured human retinal pigment epithelium (RPE) cells. MethodsCultured human RPE cells(8th-12th generations)were exposed to the blue light at the intensity of (2000±500) Lux for 6 hours to establish the light injured model. Light injured cells were divided into HtrA1 siRNA group, negative control group and blank control group. HtrA1 siRNA group and negative control group were transfected with HtrA1 siRNA and control siRNA respectively. The proliferation of cells was assayed by CCK-8 method. Transwell test was used to detect the invasion ability of these three groups. Flow cytometry was used to detect the cell cycle and apoptosis. The expression of HtrA1 and vascular endothelial growth factor (VEGF)-A was detected by real time-polymerase chain reaction and Western blot respectively. ResultsThe mRNA and protein level of HtrA1 in the light injured cells increased significantly compared to that in normal RPE cells (t=17.62, 15.09; P<0.05). Compared with negative control group and blank control group, the knockdown of HtrA1 in HtrA1 siRNA group was associated with reduced cellular proliferation (t=6.37, 4.52), migration (t=9.56, 12.13), apoptosis (t=23.37, 29.08) and decreased mRNA (t=17.36, 11.32, 7.29, 4.05) and protein levels (t=12.02, 15.28, 4.98, 6.24) of HtrA1 and VEGF-A. Cells of HtrA1 siRNA group mainly remained in G0/G1 phase, the difference was statistically significant (t=6.24, 4.93; P<0.05). ConclusionKnockdown of HtrA1 gene may reduce the proliferation, migration capability and apoptosis of light-injured RPE cells, and decrease the expression of VEGF-A.
Objective To establish a cell culture model in vitro of acute lung injury and investigate the effects of NF-κB p65 on the inflammation and oxidative stress in TNF-α-activated type Ⅱ alveolar epithelial cells. Methods A549 cells were treated with TNF-α ( 10 ng/mL, 24 h) in the absence or presence of NF-κB p65 siRNA ( 50 nmol /L) . RT-PCR and Western blot were performed to analyze the silence efficiency of RNAi targeting NF-κB p65. The contents of IL-1β, IL-4, and IL-6 in the culture supernatant were measured by ELISA. The concentration of MDA and SOD were detected by colorimetric method. The survival rate of cell was assessed by the methyl thiazolyl tetrazolium ( MTT) assay. Results P65 RNAi significantly decreased the transcription and translation of NF-κB p65 induced by TNF-α( P lt; 0. 05) . The levels of IL-1β, IL-4, and IL-6 were significantly lower in the supernatants of A549 cells pretransfected with NF-κB p65 siRNA ( P lt;0. 05) , while the concentration of MDA markedly decreased ( P lt; 0. 05) , and the activation of SOD increased dramatically ( P lt; 0. 05) . Consequently, the survival rate of A549 in the p65 siRNA group improved( P lt; 0. 05) . Conclusions NF-κB p65 plays a key role in the oxidative stress induced by TNF-α. NF-κB p65 silencing can down-regulate the inflammation and oxidative stress induced by TNF-αand enhance the proliferation of alveolar epithelial cells.
ObjectiveTo investigate the influence of EZH2 gene down-regulation by RNA interference on the proliferation and invasion of human glioma cell line U251. MethodsThe recombinant plasmid of small hairpin RNA targeting EZH2 gene was constructed, and transfected into gioma U251 cells by electroporation. The expression of EZH2 mRNA and protein in the cells was detected by using reverse transcriptase-polymerase chain reaction and Western blot respectively; the viability of cells was determined by using methyl thiazol tetrazo1ium assay; and the invasiveness of U251 cells was tested by Transwell cabin. ResultsThe expression levels of EZH2 mRNA in U251 cells were detected in a significantly lower proportion in the EZH2-shRNA group (0.19±0.02) than that in the untransfected group (1.13±0.05) and the control-shRNA-GFP group (1.15±0.05). The expression levels of EZH2 protein in U251 cells were detected in a significantly lower proportion in the EZH2-shRNA group (0.20±0.02) than that in the untransfected group (1.03±0.03) and the control-shRNA-GFP group (0.97±0.06). The proliferation rates in EZH2-shRNA group were significantly decreased as compared with those in the untransfected group and control-shRNA-GFP group (24 hours after transfection:60.13%±3.15%, 100.00%±9.31%, 100.03%±9.35%; 48 hours after transfection:53.01%±3.14%, 100.00%±9.13%, 99.58%±9.27%; P<0.05) and Transwell cabin suggested that the invasiveness of U251 cells was significantly decreased (46.00±2.82, 60.67±5.71, 61.00±2.48; P<0.01). ConclusionEZH2-targeted RNA interference can reduce the proliferation and invasion of human glioma cells, which suggests that EZH2 shRNA may be a potential gene therapeutic target of human glioma.