west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Pulmonary fibrosis" 42 results
  • The Effects and Related Mechanism of IGF-1-Treated Mesenchymal Stem Cells in Pulmonary Fibrosis in Rats

    【Abstract】 Objective To explore the new therapy for pulmonary fibrosis by observing the effects of insulin-like growth factor 1 ( IGF-1) treated mesenchymal stemcells ( MSCs) in rats with bleomycin-induced pulmonary fibrosis. Methods Bone marrowmesenchymal stemcells ( BMSCs) were harvested from6-week old male SD rats and cultured in vitro for the experiment. 48 SD rats were randomly divided into 4 groups, ie.a negative control group ( N) , a positive control group/bleomycin group ( B) , a MSCs grafting group ( M) ,and an IGF-1 treated MSCs grafting group ( I) . The rats in group B, M and I were intratracheally injected with bleomycin ( 1 mL,5 mg/kg) to induce pulmonary fibrosis. Group N were given saline as control. Group M/ I were injected the suspension of the CM-Dil labled-MSCs ( with no treatment/pre-incubated with IGF-1 for 48 hours) ( 0. 5mL,2 ×106 ) via the tail vein 2 days after injected bleomycin, and group B were injected with saline ( 0. 5 mL) simultaneously. The rats were sacrificed at 7,14,28 days after modeling. The histological changes of lung tissue were studied by HE and Masson’s trichrome staining. Hydroxyproline level in lung tissue was measured by digestion method. Frozen sections were made to observe the distribution of BMSCs in lung tissue, and the mRNA expression of hepatocyte growth factor ( HGF) was assayed by RTPCR.Results It was found that the red fluorescence of BMSCs existed in group M and I under the microscope and the integrated of optical density ( IOD) of group I was higher than that of group M at any time point. But the fluorescence was attenuated both in group M and group I until day 28. In the earlier period, the alveolitis in group B was more severe than that in the two cells-grafting groups in which group I was obviously milder. But there was no significant difference among group I, M and group N on day 28.Pulmonary fibrosis in group B, Mand I was significantly more severe than that in group N on day 14, but itwas milder in group M and I than that in group B on day 28. Otherwise, no difference existed between the two cells-grafting groups all the time. The content of hydroxyproline in group B was significantly higher than that in the other three groups all through the experiment, while there was on significant difference betweengroup I and group N fromthe beginning to the end. The value of group M was higher than those of group I and group N in the earlier period but decreased to the level of negative control group on day 28. Content of HGF mRNA in group Nand group I was maintained at a low level during the whole experiment process. The expression of HGF mRNA in group I was comparable to group M on day 7 and exceeded on day 14, the difference of which was more remarkable on day 28. Conclusions IGF-1 can enhance the migratory capacity of MSCs which may be a more effective treatment of lung disease. The mechanismmight be relatedto the increasing expression of HGF in MSCs.

    Release date:2016-08-30 11:55 Export PDF Favorites Scan
  • Clinical Pathological Analysis of Death from Paraquat Poisoning

    ObjectiveTo analyze the clinical and pathologic features of paraquat poisoning, discuss the damage mechanism of pulmonary fibrosis caused by paraquat poisoning. MethodsWe retrospectively analyzed the paraquat poisoning-related cases collected in recent years from January 2010 to December 2013, and compared the clinical features and pathologic changes between acute and chronic paraquat poisoning cases. ResultsThe main clinical and pathologic manifestation of paraquat poisoning was multiple organ damage, especially with lung as its target organ. In acute poisoning deaths, the lung injury was characterized by the pulmonary edema and formation of lung transparent membrane; In chronic poisoning deaths, the injury was characterized by the formation of lung transparent membrane and pulmonary fibrosis. ConclusionIn order to make an earlier diagnosis in clinical cases, we should strengthen the cognition of clinical manifestations and damage mechanism of paraquat poisoning. To obtain an accurate conclusion in forensic medicine appraisal, we should draw a comprehensive analysis of the forensic case, the clinical data, the toxicological analysis and the autopsical results.

    Release date: Export PDF Favorites Scan
  • Effect of curcumin on bleomycin-induced pulmonary fibrosis in rats

    Objective To study the inhibitory effects of curcumin on bleomycin-induced pulmonary fibrosis in rats at the fibrosing stage and explore its possible mechanism.Methods 96 male SD rats were randomly divided into a normal control group,a fibrosis model group,a fibrosis model treated with prednisone group and a fibrosis model treated with curcumin group.Pulmonary fibrosis were induced by instilled bleomycin through tracheal.From day 15 after bleomycin administration,the curcumin group and prednisone group were given curcumin(300 mg/kg) or prednisone(5 mg/kg) per day by intragastric administration,respectively.The normal control group and fibrosis model group were given 1% sodium carboxymethyl cellulose(10 mL/kg) as control.Six rats of each group were randomly sacrificed on day 21,28,42 and 56 after bleomycin administration,respectively.The histological changes of the lung were evaluated by HE and Masson’s trichrome staining.Lung expressions of transforming growth factor-β1(TGF-β1) and hydroxyproline were assessed by immuno-histochemistry and digestion method,respectively.Results Pulmonary fibrosis and hydroxyproline level in the curcumin group were significantly reduced as compared with those in the model group on day 42 and 56.The expession of TGF-β1 in the curcumin group was significantly lower than that in the model group on day 28,42 and 56,and was not significantly different from the normal group on day 56.Conclusion Curcumin could alleviate bleomycin-induced pulmonary fibrosis in rats at the fibrosing stage by inhibiting the expressions of TGF-β1.

    Release date:2016-08-30 11:35 Export PDF Favorites Scan
  • Clinical Features of Microscopic Polyangiitis with Pulmonary Involvement in Comparison with Idiopathic Pulmonary Fibrosis

    Objective To explore the clinical features of microscopic polyangiitis ( MPA )complicated with pulmonary involvement in comparison with idiopathic pulmonary fibrosis ( IPF) . Methods Clinical and laboratory data of 27 patients with MPA and 56 patients with IPF in the Drum Tower Hospital from2006 to 2010 were analyzed retrospectively. The differences were compared between the MPA patients with pulmonary fibrosis manifestation ( MPA/PF patients) and those without pulmonary fibrosis manifestation( MPA/NPF patients) , and the IPF patients. Results The differences between the MPA/PF patients and the MPA/NPF patients were rarely found in terms of respiratory symptoms, ANCA positive rate, and multiple organ involvement, but the proportions of suffering severe renal damage and severe pulmonary hypertension in the MPA /PF patients were relatively high ( P lt; 0. 05) . Furthermore, there were significant differences between the MPA/PF patients and the IPF patients in terms of dyspnea, incidence of renal damage, ANCA positive rate, incidence of serious pulmonary hypertension, and multiple organ involvement. The IPF patients were more prone to develop dyspnea while MPA patients were more prone to develop renal damage, high ANCA positive rate, high incidence of serious PAH and multiple organ involvement, such as rush, joint pain,weight loss, fever and gastrointestinal symptoms ( P lt;0. 05) . Conclusions When patients have respiratory symptoms complicated with renal failure, skin damage, fever, and joint pain, the diagnosis of MPA should be considered. For patients who were clinically suspected as interstitial pneumonitis or pulmonary fibrosis,measurement of serumantineutrophil cytoplasmic antibodies and creatinine test are essential for diagnosis.

    Release date:2016-08-30 11:56 Export PDF Favorites Scan
  • Bone marrow mesenchymal stem cells prevent pulmonary fibrosis through inhibiting myeloid-derived suppressor cells

    ObjectiveTo investigate the role of myeloid-derived suppressor cell (MDSC) in bleomycin (BLM)-induced pulmonary fibrosis and the possible mechanism of bone marrow mesenchymal stem cell (MSC) in therapy of BLM-induced pulmonary fibrosis.MethodsBone marrow mesenchymal stem cells (MSC) were harvested from 6-week old male BALB/c mice. One hundred and four female BALB/c mice were randomly divided into 3 groups. Mice in control (n=32) and BLM group were instilled with normal saline (NS) or BLM via trachea and NS were injected via tail vein on the 1st, 2nd and 3rd day after NS administration. Mice in MSC group (n=40) were instilled with BLM via trachea and MSC (total cell number=1.5×106) were injected via tail vein. On the 1st, 3rd, 5th, 8th, 11th, 14th, 18th, 21st, 25th and 32nd day after BLM administration, the percentage of Gr-1+CD11b+ cells in peripheral blood mononuclear cell (PBMC) was detected by flow cytometry. Eight mice from each group were killed on the 3rd, 8th, 18th and 32nd day after BLM administration, the percentage of Gr-1+CD11b+ cells in the lung tissue was detected by flow cytometry. Meanwhile, the lung tissue specimens were stained with Masson. The sry gene of Y chromosome was detected by polymerase chain reaction (PCR).ResultsCompared with BLM group, MSC transplantation significantly reduced pulmonary inflammation in MSC group [(1.32±0.25) vs. (2.53±0.56); and (1.06±0.42) vs. (2.27±0.82), respectively, P<0.01)]. Likewise, MSC transplantation significantly reduced pulmonary fibrosis and deposition of collagen as compared with BLM group [(1.02±0.44) vs. (1.81±0.74), and (1.51±0.73) vs. (2.72±0.54), respectively, P<0.05)]. The percentage of Gr-1+CD11b+ cells in the BLM group was significantly increased as compared with control group. Compared with BLM group, MSC transplantation significantly reduced Gr-1+CD11b+ cells in MSC group (P<0.05). The sry gene (201 bp) was detected in the lungs of female mice within 96 hours after MSC administration.ConclusionsMDSC participates in the procedure of BLM-induced pulmonary fibrosis. Syngeneic MSC inhibits the generation of MDSC and further suppresses BLM-induced pulmonary fibrosis.

    Release date:2021-06-30 03:37 Export PDF Favorites Scan
  • Effects of sodium ferulate on lung mRNA expression of TGF-β1 signal transduction molecule in pulmonary fibrosis rats

    Objective To investigate the effects of sodium ferulate on lung mRNA expression of TGF-β1 signal transduction molecule in rats with pulmonary fibrosis,and explore the mechanism of sodium ferulate on pulmonary fibrosis.Methods A rat model of pulmonary fibrosis was induced by intratracheal injection of bleomycin (5 mg/kg).Thirty SD rats were randomly divided into three groups (n=10 in each group),ie.a control group,a pulmonary fibrosis model group,and a sodium ferulate group.The lung histopathology and the expression of collagen was examined by HE staining and collagen fibril staining respectively.The expressions of TGF-βRII and Smad4 mRNA in the lung tissue were detected by situ hybridization.And the expression of TGF-β1 mRNA was detected by real-time fluorescence-quantification RT-PCR.Results Collagen fibril staining indicated that the expression of pulmonary collagen in the model group was significantly higher than that in the control group and sodium ferulate group (Plt;0.001).The mRNA expressions of pulmonary TGF-β1,TGF-βRII and Smad4 were significantly higher in the model group than those in the control group (all Plt;0.01),and were significantly lower in the sodium ferulate group than those in the model group (all Plt;0.05).Conclusions Sodium ferulate can effectively reduce pulmonary fibrosis through inhibition of the mRNA expression of TGF-β1,TGF-βRII and Smad4 in the lung tissue,thus influence the TGF-β1/Smad4 signal transduction way and inhibit the target gene activation.

    Release date:2016-08-30 11:35 Export PDF Favorites Scan
  • Bone Marrow Mesenchymal Stem Cells Transform to Alveolar Epithelial Cells in Bleomycin Induced Lung Injury

    Objective To explore the migration and differentiation of bone marrow mesenchymal stem cells(MSCs) in lung . Methods MSCs were harvested from a male Wister rat. Sixty female Wister rats were randomly divided into four groups. The pulmonary fibrosis model was established by intratracheal instillation of bleomycin in group A-D. Immediately and 7 days after bleomycin administration respectively,the rats in group B and C received infusion with 5-bromodeoxynridine (BrdU) labeled MSCs via tail vein. And the rats in group D were infused MSCs without BrdU labeling serving as a negative control. The sry gene of Y chromosome was detected by polymerase chain reaction (PCR). Double immunofluorescence staining was used to detected BrdU and surfactant associated protein-C (SP-C) expression in lung tissue,fresh bone marrow,and the 5th generation MSCs. Reverse transcriptipon-PCR was used to detect the expressions of SP-C mRNA and AQP-5 mRNA. Results The sry gene was detected in bleomycin induced lung injury tissues of the rats after MSCs infusion immediately and on the 7th day The MSCs in lung tissue could transformed into cells with ACEⅡ morphological features and molecular phenotype. The transformation rate was higher in the rats received MSCs infusion immediately than the rats received on 7th day. The 5th generation MSCs and fresh bone marrow expressed SP-C mRNA,without AQP-5 mRNA and SP-C expression. Conclusions Exogenous MSCs can be transplanted into injured lung tissues and transform into AECⅡ,especially in early stage of lung injury. The differentiation potential of MSCs can be activated in injury micro-environment.

    Release date:2016-08-30 11:58 Export PDF Favorites Scan
  • Effects of Caveolin-1 Scaffolding Domain Peptide on Expressions of Extracellular Matrix and Smads in Human Fetal Lung Fibroblasts

    Objective To investigate the effects of caveolin-1 scaffolding domain peptide ( CSD-p)on expressions of extracellular matrix and Smads in human fetal lung fibroblasts. Methods Human fetal lung fibroblasts were cultured in vitro and divided into four groups. A control group: the cells were cultured in DMEMwithout TGF-β1 or CSD-p. A CSD-p treatment group: the cells were cultured in DMEMcontaining 5 μmol /L CSD-p. A TGF-β1 treatment group: the cells were cultured in DMEMcontaining 5 μg/L TGF-β1 .A TGF-β1 + CSD-p treatment group: the cells were cultured in DMEM containing 5 μg/L TGF-β1 and 5 μmol /L CSD-p. Caveolin -1 mRNA was detected by RT-PCR. Caveolin-1, collagen-Ⅰ, α-SMA, p-Smad2,p-Smad3 and Smad7 proteins were measured by Western blot. Results Compared with the control group,the Caveolin -1 mRNA and protein expressions in the cells of TGF-β1 group significantly reduced ( mRNA:0. 404 ±0. 027 vs. 1. 540 ±0. 262; protein: 0. 278 ±0. 054 vs. 1. 279 ±0. 085; P lt; 0. 01) , and the expression levels of collagen-Ⅰ and α-SMA proteins significantly increased ( collagen-Ⅰ: 1. 127 ±0. 078 vs.0. 234 ±0. 048; α-SMA: 1. 028 ±0. 058 vs. 0. 295 ±0. 024) . Meanwhile, the expression levels of p-Smad2 ( 1. 162 ±0. 049 vs. 0. 277 ±0. 014) and p-Smad3 proteins ( 1. 135 ±0. 057 vs. 0. 261 ±0. 046) increased with statistical significance ( P lt; 0. 01) , but the expression level of Smad7 protein significantly reduced( 0. 379 ±0. 004 vs. 1. 249 ±0. 046, P lt;0. 001) . In the CSD-p group, CSD-p had no significant effects on the expressions of above proteins compared with the control group. But in the TGF-β1 +CSD-p group, the overexpressions of collagen-Ⅰ, α-SMA, p-Smad2 and p-Smad3 induced by TGF-β1 were obviously inhibited by CSD-p ( collagen-Ⅰ: 0. 384 ±0. 040 vs. 1. 127 ±0. 078; α-SMA: 0. 471 ±0. 071 vs. 1. 127 ±0. 078;p-Smad2: 0. 618 ±0. 096 vs. 1. 162 ±0. 049; p-Smad3: 0. 461 ±0. 057 vs. 1. 135 ±0. 057; P lt; 0. 01) .Otherwise, the up-regulation of Smad7 ( 0.924 ±0. 065 vs. 0.379 ±0. 004) was found. Conclusions CSD-p can reduce fibroblast collagen-I and α-SMA protein expressions stimulated by TGF-β1 , possibly through regulation of TGF-β1 /Smads signaling pathway. It is suggested that an increase in caveolin -1 function through the use of CSD-p may be an intervention role in pulmonary fibrosis.

    Release date:2016-08-30 11:56 Export PDF Favorites Scan
  • Construction and activity identification of luciferase reporter containing human CTGF gene promoter

    ObjectiveTo construct a luciferase reporter fusion containing the human connective tissue growth factor (CTGF) gene promoter.MethodsThe promoter region of the human CTGF gene (-835/+214) was amplified by polymerase chain reaction (PCR) using specially-designed primers, and subsequently cloned into the pGL3.0-Basic vector. Following screening and verification by single colony PCR, double digestion, and sequencing, the resulting pGL3.0-Basic-CTGF was used to transfect the human embryonic kidney cells 293T, human bronchial epithelial cells HBE and human lung epithelial cells A549, and its function in each cell line was determined by luciferase assay.ResultsSequence alignment showed 99.5% identity, suggesting successful construction of the pGL3.0-Basic-CTGF reporter fusion. Promoter activities were detected 48 hours after transfection of pGL3.0-Basic-CTGF into the 293T, HBE, and A549 cells, and the promoter activities were 2.416, 0.027, and 0.121, respectively (P<0.01). Moreover, the luciferase activity in the A549 cells was statistically higher than that in the HBE cells (P<0.01).ConclusionsThe human pGL3.0-Basic-CTGF luciferase reporter fusion has been successfully constructed. The construct exhibits promoter activity in the bronchial epithelial cells HBE and the lung epithelial cells A549, and can therefore serve as a useful tool for future research in transcriptional regulation.

    Release date:2020-02-24 05:02 Export PDF Favorites Scan
  • Effects of Reduced Glutathione in Rats with Pulmonary Fibrosis

    ObjectiveTo explore the antioxidant effects of reduced glutathione on rat pulmonary fibrosis compared with traditional corticosteroid. MethodsOne-hundred and eight healthy SD rats were randomly divided into 6 groups,ie. a control group,a model group,a dexamethasone group,a low-dose glutathione group,a middle-dose glutathione group,and a high-dose glutathione group,with 18 rats in each group. The pulmonary fibrosis model was established by intratrachially instillation of bleomycin in all rats except the control group. The severity of lung fibrosis was evaluated by HE staining and Masson staining of collagen,and measurement of glutathione,hydroxyproline,superoxide dismutase (SOD),glutathion peroxidase (GSH-Px)in lung tissue homogenate by photocolorimetric method. ResultsOn 7th day and 14th day after bleomycin instillation, the severity of alveolitis in the model group,the dexamethasone group,and three glutathione intervention groups was significantly reduced compared with the control group (P<0.05). On 28 day, the severity of lung fibrosis was significantly reduced in the dexamethasone group and three glutathione intervention groups compared with the model group (P<0.05). On 7th day,lung glutathione content was significantly lower in the model group compared with the control group (P<0.05), significantly higher in the dexamethasone group and three glutathione intervention groups compared with the model group (P<0.05), significantly lower in the dexamethasone group and the low-dose glutathione group compared with the control group (P<0.05), and significantly higher in the high-dose glutathione group compared with the dexamethasone group (P<0.05). On 7th,14th,and 28th day,the hydroxyproline content in the dexamethasone group and three glutathione intervention groups decreased significantly compared with the model group (P<0.05). On 14th day,the hydroxyproline content in the middle-dose and high-dose glutathione groups was significantly lower than that in the dexamethasone group (P<0.05). SOD and GSH-Px were significantly reduced in the model group compared with the control group on all time points (P<0.05),but significantly increased after intervention by different doses of glutathione (P<0.05). ConclusionReduced glutathione can significantly reduce the degree of pulmonary fibrosis in rats,but has no obvious advantage over dexamethasone.

    Release date:2016-10-12 10:17 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content